Journal of Biomolecular NMR

, Volume 30, Issue 1, pp 1–10 | Cite as

Resolution and sensitivity of high field nuclear magnetic resonance spectroscopy

  • D. Rovnyak
  • J.C. Hoch
  • A.S. Stern
  • G. Wagner


The arrival of very high field magnets and cryogenic circuitries, and the development of relaxation-optimized pulse sequences have added powerful tools for increasing sensitivity and resolution in NMR studies of biomacromolecules. The potential of these advances is not fully realized in practice, however, since current experimental protocols do not permit sufficient data sampling for optimal resolution in the indirect dimensions. Here we analyze quantitatively how increasing resolution in indirect dimensions affects the S/N ratio and compare this with currently used sampling routines. Optimal resolution would require sampling up to ∼3R2−1, and the S/N reaches a maximum at ∼1.2R2−1. Currently used data acquisition protocols rarely sample beyond 0.4R2−1, and extending evolution times would result in prohibitively long experiments. We show that a general solution to this problem is to use non-uniform sampling, where only a small subset of data points in the indirect sampling space are measured, and possibly different numbers of transients are collected for different evolution times. Coupled with modern methods of spectrum analysis, this strategy delivers substantially improved resolution and/or reduced measuring times compared to uniform sampling, without compromising sensitivity. Higher resolution in the indirect dimensions will facilitate the use of automated assignment programs.

maximum entropy NMR non-linear sampling protein resolution sensitivity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Andrec, M. and Prestegard, J.H. (1998) J. Magn. Reson., 130, 217-32.Google Scholar
  2. Barna, J.C.J., Laue, E.D., Mayger, M.R., Skilling, J. and Worrall, S.J. P. (1987) J. Magn. Reson., 73, 69-77.Google Scholar
  3. Burg, J.P. (1978) In Modern Spectrum Analysis, Childers, D.J. (Ed.), I.E.E.E. Press, New York, pp. 42-48.Google Scholar
  4. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, Inc., San Diego, CA.Google Scholar
  5. Ernst, R.R. and Anderson, W.A. (1966) Rev. Sci. Instr., 37, 93-102.Google Scholar
  6. Ernst, R.R., Bodenhausen, G. and Wokaun, A. (1987) Principles of Nuclear Magnetic Resonance in One and Two Dimensions, Clarendon Press, Oxford.Google Scholar
  7. Hoch, J.C. and Stern, A.S. (1996) NMR Data Processing, Wiley-Liss, New York.Google Scholar
  8. Hyberts, S.G. and Wagner, G. (2003) J. Biomol. NMR, 26, 335-44.Google Scholar
  9. Levitt, M.H., Bodenhausen, G. and Ernst, R.R. (1984) J. Magn. Reson., 58, 462-472.Google Scholar
  10. Orekhov, V.Y., Ibraghimov, I.V. and Billeter, M. (2001) J. Biomol. NMR, 20, 49-60.Google Scholar
  11. Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308-332.Google Scholar
  12. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 94, 12366-12371.Google Scholar
  13. Pons, J.-L., Malliavin, T.E. and Delsuc, M.A. (1996) J. Biomol. NMR, 8, 445-452.Google Scholar
  14. Rovnyak, D., Filip, C., Itin, B., Stern, A.S., Wagner, G., Griffin, R. G. and Hoch, J.C. (2003) J. Magn. Reson., 161, 43-55.Google Scholar
  15. Schmieder, P., Stern, A.S., Wagner, G. and Hoch, J.C. (1997) J. Magn. Reson., 125, 332-339.Google Scholar
  16. Seavey, B.R., Farr, E.A., Westler, W.M. and Markley, J.L. (1991) J. Biomol. NMR, 1, 217-236.Google Scholar
  17. Stern, A.S., Li, K.-B. and Hoch, J.C. (2002) J. Am. Chem. Soc., 124, 1982-1993.Google Scholar
  18. Venters, R.A., Thompson, R. and Cavanagh, J. (2002) J. Mol. Struct., 602-603, 275-292.Google Scholar
  19. Wagner, G. (1997) Nat. Struct. Biol., 4, 841-844.Google Scholar
  20. Yamazaki, T., Lee, W., Arrowsmith, C.H., Muhandiram, D.R. and Kay, L. E. (1994) J. Am. Chem. Soc., 116, 11655-11666.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. Rovnyak
    • 1
  • J.C. Hoch
    • 2
  • A.S. Stern
    • 2
  • G. Wagner
    • 3
  1. 1.Department of ChemistryBucknell UniversityLewisburgU.S.A
  2. 2.Department of Molecular, Microbial and Structural BiologyUniversity of Connecticut Health CenterFarmington, CT
  3. 3.owland Institute at HarvardCambridgeU.S.A

Personalised recommendations