Advertisement

Journal of Biomolecular NMR

, Volume 29, Issue 3, pp 299–308 | Cite as

Characterization of Phospholipid Mixed Micelles by Translational Diffusion

  • James J. Chou
  • James L. Baber
  • Ad Bax
Article

Abstract

The concentration dependence of the translational self diffusion rate, Ds, has been measured for a range of micelle and mixed micelle systems. Use of bipolar gradient pulse pairs in the longitudinal eddy current delay experiment minimizes NOE attenuation and is found critical for optimizing sensitivity of the translational diffusion measurement of macromolecules and aggregates. For low volume fractions Φ (Φ ≤ 15% v/v) of the micelles, experimental measurement of the concentration dependence, combined with use of the Ds=Do(1-3.2λΦ) relationship, yields the hydrodynamic volume. For proteins, the hydrodynamic volume, derived from Ds at infinitely dilute concentration, is found to be about 2.6 times the unhydrated molecular volume. Using the data collected for hen egg white lysozyme as a reference, diffusion data for dihexanoyl phosphatidylcholine (DHPC) micelles indicate approximately 27 molecules per micelle, and a critical micelle concentration of 14 mM. Differences in translational diffusion rates for detergent and long chain phospholipids in mixed micelles are attributed to rapid exchange between free and micelle-bound detergent. This difference permits determination of the free detergent concentration, which, for a high detergent to long chain phospholipid molar ratio, is found to depend strongly on this ratio. The hydrodynamic volume of DHPC/POPC bicelles, loaded with an M2 channel peptide homolog, derived from translational diffusion, predicts a rotational correlation time that slightly exceeds the value obtained from peptide 15N relaxation data.

bicelle detergent DHPC lysolipid hydration NMR relaxation self diffusion 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Altieri, A.S., Hinton, D.P. and Byrd, R.A. (1995) J. Am. Chem. Soc., 117, 7566-7567.Google Scholar
  2. Burns, R.A., Roberts, M.F., Dluhy, R. and Mendelsohn, R. (1982) J. Am. Chem. Soc., 104, 430-438.Google Scholar
  3. Cantor, C.R. and Schimmel, P.R. (1980) Biophysical Chemistry, Vol. Part 2, Freeman, San Francisco.Google Scholar
  4. Cavanagh, J., Fairbrother, W.J., Palmer, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego.Google Scholar
  5. Chou, J.J., Kaufman, J.D., Stahl, S.J., Wingfield, P.T. and Bax, A. (2002) J. Am. Chem. Soc., 124, 2450-2451.PubMedGoogle Scholar
  6. Fernandez, C., Hilty, C., Wider, G. and Wüthrich, K. (2002) Proc. Natl. Acad. Sci. U.S.A., 99, 13533-13537.PubMedGoogle Scholar
  7. Gaemers, S. and Bax, A. (2001) J. Am. Chem. Soc., 123, 12343-12352.PubMedGoogle Scholar
  8. Gibbs, S.J. and Johnson, C.S. (1991) J. Magn. Reson., 93, 395-402.Google Scholar
  9. Glover, K.J., Whiles, J.A., Wu, G.H., Yu, N.J., Deems, R., Struppe, J.O., Stark, R.E., Komives, E.A. and Vold, R.R. (2001) Biophys. J., 81, 2163-2171.PubMedGoogle Scholar
  10. Holz, M. and Weingartner, H. (1991) J. Magn. Reson., 92, 115-125.Google Scholar
  11. Ilyina, E., Roongta, V., Pan, H., Woodward, C. and Mayo, K.H. (1997) Biochemistry, 36, 3383-3388.PubMedGoogle Scholar
  12. Jerschow, A. and Muller, N. (1997) J. Magn. Reson., 125, 372-375.Google Scholar
  13. Johannesson, H. and Halle, B. (1996) J. Chem. Phys., 104, 6807-6817.Google Scholar
  14. Kay, L.E., Keifer, P. and Saarinen, T. (1992a) J. Am. Chem. Soc., 114, 10663-10665.Google Scholar
  15. Kay, L.E., Nicholson, L.K., Delaglio, F., Bax, A. and Torchia, D.A. (1992b) J. Magn. Reson., 97, 359-375.Google Scholar
  16. Kay, L.E., Torchia, D.A. and Bax, A. (1989) Biochemistry, 28, 8972-8979.PubMedGoogle Scholar
  17. Knubovets, T., Osterhout, J.J., Connolly, P.J. and Klibanov, A.M. (1999) Proc. Natl. Acad. Sci. U.S.A., 96, 1262-1267.PubMedGoogle Scholar
  18. Korzhnev, D.M., Skrynnikov, N.R., Millet, O., Torchia, D.A. and Kay, L.E. (2002) J. Am. Chem. Soc., 124, 10743-10753.PubMedGoogle Scholar
  19. Kovacs, F.A., Denny, J.K., Song, Z., Quine, J.R. and Cross, T.A. (2000) J. Mol. Biol., 295, 117-125.PubMedGoogle Scholar
  20. Krueger-Koplin, R.D., Sorgen, P.L., Krueger-Koplin, S.T., Rivera-Torres, I.O., Cahill, S.M., Hicks, D.B., Grinius, L., Krulwich, T.A. and Girvin, M.E. (2004) J. Biomol. NMR, 28, 43-57.PubMedGoogle Scholar
  21. Lin, T.L., Chen, S.H., Gabriel, N.E. and Roberts, M.F. (1986) J. Am. Chem. Soc., 108, 3499-3507.Google Scholar
  22. Lin, T.L., Liu, C.C., Roberts, M.F. and Chen, S.H. (1991) J. Phys. Chem., 95, 6020-6027.Google Scholar
  23. Luchette, P.A., Vetman, T.N., Prosser, R.S., Hancock, R.E.W., Nieh, M.P., Glinka, C.J., Krueger, S. and Katsaras, J. (2001) Biochim. Biophys. Acta-Biomembr., 1513, 83-94.Google Scholar
  24. Mills, R. (1973) J. Phys. Chem., 77, 685-688.Google Scholar
  25. Nieh, M.P., Glinka, C.J., Krueger, S., Prosser, R.S. and Katsaras, J. (2001) Langmuir, 17, 2629-2638.Google Scholar
  26. Ottiger, M. and Bax, A. (1998) J. Biomol. NMR, 12, 361-372.PubMedGoogle Scholar
  27. Price, W.S. (1997) Concept. Magn. Reson., 9, 299-336.Google Scholar
  28. Ramirez, B.E., Voloshin, O.N., Camerini-Otero, R.D. and Bax, A. (2000) Protein Sci., 9, 2161-2169.PubMedGoogle Scholar
  29. Stafford, R.E., Fanni, T. and Dennis, E.A. (1989) Biochemistry, 28, 5113-5120.PubMedGoogle Scholar
  30. Stejskal, E.O. and Tanner, J.E. (1965) J. Chem. Phys., 42, 288-292.Google Scholar
  31. Tanner, J.E. (1970) J. Chem. Phys., 52, 2523-2526.Google Scholar
  32. Tausk, R.J.M., van Esch, J., Karmiggelt, J., Voordouw, G. and Overbeek, J.T.G. (1974) Biophys. Chem., 1, 184-203.PubMedGoogle Scholar
  33. Tian, C.L., Tobler, K., Lamb, R.A., Pinto, L.H. and Cross, T.A. (2002) Biochemistry, 41, 11294-11300.PubMedGoogle Scholar
  34. Tokuyama, M. and Oppenheim, I. (1994) Phys. Rev. E, 50, R16-R19.Google Scholar
  35. Vold, R.R. and Prosser, R.S. (1996) J. Magn. Reson. Ser. B, 113, 267-271.Google Scholar
  36. Vold, R.R., Prosser, R.S. and Deese, A.J. (1997) J. Biomol. NMR, 9, 329-335.PubMedGoogle Scholar
  37. Wider, G., Dotsch, V. and Wüthrich, K. (1994) J. Magn. Reson. Ser. A, 108, 255-258.Google Scholar
  38. Wu, D.H., Chen, A.D. and Johnson, C.S. (1995) J. Magn. Reson. Ser. A, 115, 260-264.Google Scholar
  39. Xia, Y. and Callaghan, P.T. (1991) Macromolecules, 24, 4777-4786.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • James J. Chou
    • 1
  • James L. Baber
    • 2
  • Ad Bax
    • 2
  1. 1.Department of Biological Chemistry & Molecular PharmacologyHarvard Medical SchoolBostonU.S.A
  2. 2.Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney DiseasesNational Institutes of HealthBethesdaU.S.A

Personalised recommendations