Journal of Biomolecular NMR

, Volume 29, Issue 3, pp 243–257 | Cite as

Model-free Analysis of Protein Dynamics: Assessment of Accuracy and Model Selection Protocols Based on Molecular Dynamics Simulation

  • Jianhan Chen
  • Charles L. BrooksIII
  • Peter E. Wright


The popular model-free approach to analyze NMR relaxation measurements has been examined using artificial amide 15N relaxation data sets generated from a 10 nanosecond molecular dynamics trajectory of a dihydrofolate reductase ternary complex in explicit water. With access to a detailed picture of the underlying internal motions, the efficacy of model-free analysis and impact of model selection protocols on the interpretation of NMR data can be studied. In the limit of uncorrelated global tumbling and internal motions, fitting the relaxation data to the model-free models can recover a significant amount of quantitative information on the internal dynamics. Despite a slight overestimation, the generalized order parameter is quite accurately determined. However, the model-free analysis appears to be insensitive to the presence of nanosecond time scale motions with relatively small magnitude. For such cases, the effective correlation time can be significantly underestimated. As a result, proteins appear to be more rigid than they really are. The model selection protocols have a major impact on the information one can reliably obtain. The commonly employed protocol based on step-up hypothesis testing has severe drawbacks of oversimplification and underfitting. The consequences are that the order parameter is more severely overestimated and the correlation time more severely underestimated. Instead, model selection based on Bayesian Information Criteria (BIC), recently introduced to the model-free analysis by d'Auvergne and Gooley (2003), provides a better balance between bias and variance. More appropriate models can be selected, leading to improved estimate of both the order parameter and correlation time. In addition, the computational cost is significantly reduced and subjective parameters such as the significance level are unnecessary.

Abbreviations: MD – Molecular Dynamics; NMR – Nuclear Magnetic Resonance; DHFR – Escherichia coli dihydrofolate reducase; T1 – longitudinal relaxation time constant; T2 – transverse relaxation time constant; NOE – Nuclear Overhauser Effect; AIC – Akaike's Information Criteria; BIC – Bayesian Information Criteria; CSA – Chemical Shift Anisotropy.

AIC BIC hypothesis testing model selection NMR relaxation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Abragam, A. (1961) The Principles of Nuclear Magnetism, Clarendon Press, Oxford.Google Scholar
  2. Akaike, H. (1974) IEEE Trans. Automat. Contr., AC-19, 716-723.Google Scholar
  3. Akke, M., Skelton, N.J., Kordel, J., Palmer, A.G., III and Chazin, W.J. (1993) Biochemistry, 32, 9832-9844.PubMedGoogle Scholar
  4. Andrec, M., Montelione, G.T., and Levy, R.M. (1999) J. Magn. Reson., 139, 408-421.PubMedGoogle Scholar
  5. Andrec, M., Montelione, G.T. and Levy, R.M. (2000) J. Biomol. NMR, 18, 83-100.PubMedGoogle Scholar
  6. Bertini, I., Bryant, D.A., Ciurli, S., Dikiy, A., Fernandez, C.O., Luchinat, C., Safarov, N., Vila, A.J. and Zhao, J. (2001) J. Biol. Chem., 276, 47217-47226.PubMedGoogle Scholar
  7. Brooks, B.R., Bruccoleri, R.E., Olafson, B.D., States, D.J., Swaminathan, S., and Karplus, M. (1983) J. Comput. Chem., 4, 187-217.Google Scholar
  8. Brooks, III, C.L., Karplus, M. and Pettitt, B.M. (1988) Proteins: A Theoretical Perspective of Dynamics, Structure, and Thermodynamics, John Wiley and Sons, New York.Google Scholar
  9. Brunger, A.T., Adams, P.D., Clore, G.M., DeLano, W.L., Gros, P., Grosse-Kunstleve, R.W., Jiang, J.-S., Kuszewski, J., Nilges, N., Pannu, N.S., Read, R.J., Rice, L.M., Simonson, T. and Warren, G.L. (1998) Acta. Cryst., D54, 905-921.Google Scholar
  10. Brüschweiler, R., Roux, B., Blackledge, M., Griesinger, C., Karplus, M. and Ernst, R.R. (1992) J. Am. Chem. Soc., 114, 2289-2302.Google Scholar
  11. Burnham, K.P. and Anderson, D.R. (1998) Model Selection and Inference: A Practical Information-Theoretic Approach, Springer-Verlag, New York.Google Scholar
  12. Case, D.A. (2002) Acc. Chem. Res., 35, 325-331.PubMedGoogle Scholar
  13. Cavanagh, J., Faribrother, W.J., Palmer, III, A.G. and Skelton, M.J. (1996) Protein NMR Spectroscopy: Principles and Practice, Academic Press, San Diego.Google Scholar
  14. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990) J. Am. Chem. Soc., 112, 4989-4991.Google Scholar
  15. Cole, R. and Loria, J.R. (2002) Biochemistry, 41, 6072-6081.PubMedGoogle Scholar
  16. Dangi, B., Dobrodumov, A.V., Louis, J.M. and Gronenborn, A.M. (2002) Biochemistry, 41, 9376-9388.PubMedGoogle Scholar
  17. d'Auvergne, E.J. and Gooley, P.R. (2003) J. Biomol. NMR, 25, 25-39.PubMedGoogle Scholar
  18. Deep, S., Walker, III, K.P., Shu, Z. and Hinck, A.P. (2003) Biochemistry, 42, 10126-10139PubMedGoogle Scholar
  19. Farrow, N.A., Zhang, O., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153-162.PubMedGoogle Scholar
  20. Ishima, R. and Torchia, D.A. (2000) Nat. Struct. Biol., 7, 740-743.PubMedGoogle Scholar
  21. Jin, D., Andrec, M., Montelione, G.T. and Levy, R.M. (1998) J. Biomol. NMR, 12, 471-492.PubMedGoogle Scholar
  22. Joregensen, W.L., Chandrasekhar, J., Madura, J.D., Impey, R.W. and Klein, M.L. (1983) J. Chem. Phys., 79, 926-35.Google Scholar
  23. Karplus, M. and McCammon, J.A. (2002) Nat. Struct. Biol., 9, 646-652.PubMedGoogle Scholar
  24. Kelley, III, J.J., Caputo, T.M., Eaton, S.F., Laue, T.M. and Bushweller, J.H. (1997) Biochemistry, 36, 5029-5044.PubMedGoogle Scholar
  25. Koehl, P. (1999) Prog. NMR. Spec., 34, 257-299.Google Scholar
  26. Kroenke, C.D., Loria, J.P., Lee, L.K., Rance, M. and Palmer, III, A.G. (1998) J. Am. Chem. Soc., 120, 7905-7915.Google Scholar
  27. Kullback, S. and Leibler, R.A. (1951) Ann. Math. Stat., 22, 79-86.Google Scholar
  28. Levy, R. M., Karplus, M. and Wolynes, P.G. (1981) J. Am. Chem. Soc., 103, 5998-6011.Google Scholar
  29. Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546-4559.Google Scholar
  30. Ma, L., Hass, M.A.S., Vierick, N., Kristensen, S.M., Ulstrup, J. and Led, J.J. (2003) Biochemistry, 42, 320-330.PubMedGoogle Scholar
  31. MacKerell, Jr., A.D., Bashford, D., Bellott, M., Dunbrack, R.L., Evanseck, J.D., Field, M.J., Fischer, S., Gao, J., Guo, H., Ha, S., Joseph-McCarthy, D., Kuchnir, L., Kuczera, K., Lau, F.T.K., Mattos, C., Michnick, S., Ngo, T., Nguyen, D.T., Prodhom, B., Reiher, III, W.E., Roux, B., Schlenkrich, M., Smith, J.C., Stote, R., Straub, J., Watanabe, M., Wiorkiewicz-Kuczera, J., Yin, D. and Karplus, M. (1998) J. Phys. Chem. B, 102, 3586-3616.Google Scholar
  32. Mandel, A.M., Akke, M. and Palmer, III, A.G. (1995) J. Mol. Biol., 246, 144-163.PubMedGoogle Scholar
  33. Osborne, M.J. and Wright, P.E. (2001) J. Biomol. NMR, 19, 209-230.PubMedGoogle Scholar
  34. Osborne, M.J., Schnell, J., Benkovic, S.J., Dyson, H.J. and Wright, P.E. (2001) Biochemistry, 40, 9846-9859.PubMedGoogle Scholar
  35. Palmer, III, A.G. (2001) Annu. Rev. Biophys. Biomol. Struct., 30,129-155.PubMedGoogle Scholar
  36. Palmer, A.G., Rance, M. and Wright, P.E. (1991) J. Am. Chem. Soc., 113, 4371-4380.Google Scholar
  37. Pavelites, J.J., Gao, J., Bash, P.A., Alexander, D. and Mackerell, J. (1997) J. Comput. Chem., 18, 221-229.Google Scholar
  38. Pawley, N.H., Wang, C., Koide, S. and Nicholson, L.K. (2001) J. Biomol. NMR, 20, 149-165.PubMedGoogle Scholar
  39. Peng, J.W. and Wagner, G. (1992) J. Magn. Reson., 98, 308-332.Google Scholar
  40. Pfeiffer, S., Fushman, D. and Cowburn, D. (2001) J. Am. Chem. Soc., 123, 3021-3036.PubMedGoogle Scholar
  41. Prompers, J.J. and Brüschweiler, R. (2002) J. Am. Chem. Soc., 124, 4522-4534.PubMedGoogle Scholar
  42. Radkiewicz, J.L. and Brooks, III, C.L. (2000) J. Am. Chem. Soc., 122, 225-231.Google Scholar
  43. Ryckaert, J.P., Ciccotti, G. and Berendsen, H.J.C. (1977) J. Comput. Phys., 23, 327-341.Google Scholar
  44. Schwarz, G. (1978) Ann. Stat., 6, 461-464.Google Scholar
  45. Song, J. and Markley, J.L. (2003) Biochemistry, 42, 5186-5194.PubMedGoogle Scholar
  46. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562-12566.Google Scholar
  47. Tugarinov, V., Liang, Z., Shapiro, Y.E., Freed, J.H. and Meirovitch, E. (2001) J. Am. Chem. Soc., 123, 3055-3063.PubMedGoogle Scholar
  48. Tugarinov, V., Shapiro, Y.E., Liang, Z., Freed, J.H. and Meirovitch, E. (2002) J. Mol. Biol., 315, 155-170.PubMedGoogle Scholar
  49. Wallach, D.J. (1967) J. Chem. Phys., 47, 5258.Google Scholar
  50. Wand, A.J. (2001) Nat. Struct. Biol., 8, 926-931.PubMedGoogle Scholar
  51. Wax, M. and Ziskind, I. (1989) IEEE Trans. Acoust., Speach, Signal Processing, 37, 1190-1196.Google Scholar
  52. Woessner, D.E. (1962) J. Chem. Phys., 3, 647-654.Google Scholar
  53. Wrabl, J.O., Shortle, D. and Woolf, T.B. (2000) Proteins, 38, 123-133.PubMedGoogle Scholar
  54. Yang, D. and Kay, L.E. (1996) J. Mol. Biol., 263, 369-382.PubMedGoogle Scholar
  55. Ye, J., Mayer, K.L., Mayer, M.R. and Stone, M.J. (2001) Biochemistry, 40, 7820-7831.PubMedGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Jianhan Chen
    • 1
  • Charles L. BrooksIII
    • 1
  • Peter E. Wright
    • 1
  1. 1.Department of Molecular BiologyThe Scripps Research InstituteLa JollaUSA

Personalised recommendations