Advertisement

Journal of Biomolecular NMR

, Volume 29, Issue 2, pp 139–150 | Cite as

Characterization of threonine side chain dynamics in an antifreeze protein using natural abundance 13C NMR spectroscopy

  • Margaret E. Daley
  • Brian D. Sykes
Article

Abstract

The dynamics of threonine side chains of the Tenebrio molitor antifreeze protein (TmAFP) were investigated using natural abundance 13C NMR. In TmAFP, the array of threonine residues on one face of the protein is responsible for conferring its ability to bind crystalline ice and inhibit its growth. Heteronuclear longitudinal and transverse relaxation rates and the 1H-13C NOE were determined in this study. The CαH relaxation measurements were compared to the previously measured 15N backbone parameters and these are found to be in agreement. For the analysis of the threonine side chain motions, the model of restricted rotational diffusion about the χ1 dihedral angle was employed [London and Avitabile (1978) J. Am. Chem. Soc., 100, 7159–7165]. We demonstrate that the motion experienced by the ice binding threonine side chains is highly restricted, with an approximate upper limit of less than ±25°.

antifreeze protein natural abundance 13C NMR side chain dynamics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abragam, A. (1961) Principles of Nuclear Magnetism, Clarendon Press, Oxford, U.K.Google Scholar
  2. Cho, C.H., Urquidi, J., Singh, S. and Robinson, G.W. (1999) J. Phys. Chem., B103, 1991–1994.Google Scholar
  3. Clore, G.M. and Gronenborn, A.M. (1989) Crit. Rev. Biochem. Mol. Biol., 24, 479–557.Google Scholar
  4. Clore, G.M., Driscoll, P.C., Wingfield, P.T. and Gronenborn, A.M. (1990a) Biochemistry, 29, 7387–7401.Google Scholar
  5. Clore, G.M., Szabo, A., Bax, A., Kay, L.E., Driscoll, P.C. and Gronenborn, A.M. (1990b) J. Am. Chem. Soc., 112, 4989–4991.Google Scholar
  6. Daley, M.E. and Sykes, B.D. (2003) Protein Sci., 12, 1323–1331.Google Scholar
  7. Daley, M.E., Spyracopoulos, L., Jia, Z., Davies, P.L. and Sykes, B.D. (2002) Biochemistry, 41, 5515–5525.Google Scholar
  8. Delaglio, F., Grzesiek, S., Vuister, G.W., Zhu, G., Pfeifer, J. and Bax, A. (1995) J. Biomol. NMR, 6, 277–293.Google Scholar
  9. Dellwo, M.J. and Wand, A.J. (1989) J. Am. Chem. Soc., 111, 4571–4578.Google Scholar
  10. Engelke, J. and Rüterjans, H. (1998) J. Biomol. NMR, 11, 165–183.Google Scholar
  11. Farrow, N.A., Muhandiram, R., Singer, A.U., Pascal, S.M., Kay, C.M., Gish, G., Shoelson, S.E., Pawson, T., Forman-Kay, J.D. and Kay, L.E. (1994) Biochemistry, 33, 5984–6003.Google Scholar
  12. Gagné, S.M., Tsuda, S., Spyracopoulos, L., Kay, L.E. and Sykes, B.D. (1998) J. Mol. Biol., 278, 667–686.Google Scholar
  13. Guenneugues, M., Gilquin, B., Wolff, N., Ménez, A. and Zinn-Justin, S. (1999) J. Biomol. NMR, 14, 47–66.Google Scholar
  14. Johnson, B.A. and Blevins, R.A. (1994) J. Biomol. NMR, 4, 603–614.Google Scholar
  15. Karplus, M. (1959) J. Chem. Phys., 30, 11–15.Google Scholar
  16. Karplus, M. (1963) J. Am. Chem. Soc., 85, 2870–2871.Google Scholar
  17. Kay, L.E. (1998) Biochem. Cell Biol., 76, 145–152.Google Scholar
  18. Kay, L.E. and Torchia, D.A. (1991) J. Magn. Reson., 95, 536–547.Google Scholar
  19. Kay, L.E., Muhandiram, R., Wolf, G., Shoelson, S.E. and Forman-Kay, J.D. (1998) Nat. Struct. Biol., 5, 156–163.Google Scholar
  20. LeMaster, D.M. and Kushlan, D.M. (1996) J. Am. Chem. Soc., 118, 9255–9264.Google Scholar
  21. Liou, Y.-C., Daley, M.E., Graham, L.A., Kay, C.M., Walker, V.K., Sykes, B.D. and Davies, P.L. (2000) Protein Expr. Purif., 19, 148–157.Google Scholar
  22. Lipari, G. and Szabo, A. (1980) J. Biophys., 30, 489–506.Google Scholar
  23. Lipari, G. and Szabo, A. (1981) J. Chem. Phys., 75, 2971–2976.Google Scholar
  24. Lipari, G. and Szabo, A. (1982a) J. Am. Chem. Soc., 104, 4546–4559.Google Scholar
  25. Lipari, G. and Szabo, A. (1982b) J. Am. Chem. Soc., 104, 4559–4570.Google Scholar
  26. London, R.E. (1980) In Magnetic Resonance in Biology, Cohen, J.S. (Ed.), Vol. 1, Wiley, New York, pp. 1–69.Google Scholar
  27. London, R.E. and Avitabile, J. (1978) J. Am. Chem. Soc., 100, 7159–7165.Google Scholar
  28. Marshall, C.B., Daley, M.E., Graham, L.A., Sykes, B.D. and Davies, P.L. (2002) FEBS Lett., 529, 261–267.Google Scholar
  29. Mispelter, J., Lefevre, C., Adjadj, E., Quiniou, E. and Favaudon, V. (1995) J. Biomol. NMR, 5, 233–244.Google Scholar
  30. Muhandiram, R., Yamazaki, T., Sykes, B.D. and Kay, L.E. (1995) J. Am. Chem. Soc., 117, 11536–11544.Google Scholar
  31. Nirmala, N.R. and Wagner, G. (1988) J. Am. Chem. Soc., 110, 7557–7558.Google Scholar
  32. Palmer, A.G., Rance, M. and Wright, P.E. (1991a) J. Am. Chem. Soc., 113, 4371–4380.Google Scholar
  33. Palmer, A.G., Wright, P.E. and Rance, M. (1991b) Chem. Phys. Lett., 185, 41–46.Google Scholar
  34. Sklenar, V., Torchia, D. and Bax, A. (1987) J. Magn. Reson., 73, 375–379.Google Scholar
  35. Tjandra, N., Feller, S.E., Pastor, R.W. and Bax, A. (1995) J. Am. Chem. Soc., 117, 12562–12566.Google Scholar
  36. Tjandra, N., Wingfield, P., Stahl, S. and Bax, A. (1996) J. Biomol. NMR, 8, 273–284.Google Scholar
  37. Wand, A.J., Urbauer, J.L., McEvoy, R.P. and Bieber, R.J. (1996) Biochemistry, 35, 6116–6125.Google Scholar
  38. Wittebort, R.J. and Szabo, A. (1978) J. Chem. Phys., 69, 1722–1736.Google Scholar
  39. Wolfram, S. (2002) Mathematica 4.2, Wolfram Research Inc. (http://www.wolfram.com)Google Scholar
  40. Yamazaki, T., Muhandiram, R. and Kay, L.E. (1994) J. Am. Chem. Soc., 116, 8266–8278.Google Scholar
  41. Yang, D., Mittermaier, A., Mok, Y.K. and Kay, L.E. (1998) J. Mol. Biol., 276, 939–954.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Margaret E. Daley
    • 1
  • Brian D. Sykes
    • 1
  1. 1.Department of Biochemistry, CIHR Group in Protein Structure and Function and Protein Engineering Network of Centres of ExcellenceUniversity of AlbertaEdmontonCanada

Personalised recommendations