Advertisement

Journal of Biomolecular NMR

, Volume 28, Issue 2, pp 157–164 | Cite as

Heteronuclear 2D (1H-13C) MAS NMR Resolves the Electronic Structure of Coordinated Histidines in Light-Harvesting Complex II: Assessment of Charge Transfer and Electronic Delocalization Effect

  • Alia
  • Jörg Matysik
  • Ido de Boer
  • Peter Gast
  • Hans J. van Gorkom
  • Huub J.M. de Groot
Article

Abstract

In a recent MAS NMR study, two types of histidine residues in the light-harvesting complex II (LH2) of Rhodopseudomonas acidophila were resolved: Type 1 (neutral) and Type 2 (positively charged) (Alia et al. J. Am. Chem. Soc.). The isotropic 13C shifts of histidines coordinating to B850 BChl a are similar to fully positively charged histidine, while the 15N shift anisotropy shows a predominantly neutral character. In addition the possibility that the ring currents are quenched by overlap in the superstructure of the complete ring of 18 B850 molecules in the LH2 complex could not be excluded. In the present work, by using two-dimensional heteronuclear (1H-13C) dipolar correlation spectroscopy with phase-modulated Lee–Goldburg homonuclear 1H decoupling applied during the t1 period, a clear and unambiguous assignment of the protons of histidine interacting with the magnesium of a BChl a molecule is obtained and a significant ring current effect from B850 on the coordinating histidine is resolved. Using the ring current shift on 1H, we refine the 13C chemical shift assignment of the coordinating histidine and clearly distinguish the electronic structure of coordinating histidines from that of fully positively charged histidine. The DFT calculations corroborate that the coordinating histidines carry ∼0.2 electronic equivalent of positive charge in LH2. In addition, the data indicate that the ground state electronic structures of individual BChl a/His complexes is largely independent of supermolecular π interactions in the assembly of 18 B850 ring in LH2.

electronic structure histidine light-harvesting complex II MAS NMR membrane protein ring currents 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alia, Matysik, J., Soede-Huijbregts, C., Baldus, M., Raap, J., Lugtenburg, J., Gast, P., van Gorkom, H.J., Hoff, A.J. and de Groot, H.J.M. (2001) J. Am. Chem. Soc., 123, 4803–4809.Google Scholar
  2. Bennet, A.E., Rienstra, C.M., Auger, M., Lakshmi, K.V. and Griffin, R.G. (1995) J. Chem. Phys., 103, 6951–6958.Google Scholar
  3. Blanchard, L., Hunter, C.N. and Williamson, M.P. (1997) J. Biomol. NMR, 9, 389–395.Google Scholar
  4. Castellani, F., van Rossum, B., Diehl, A., Schubert, M., Rehbein, K. and Oschkinat, H. (2002) Nature, 420, 98–102.Google Scholar
  5. Cogdell, R.J. and Hawthorntwaithe, A.M. (1993) In The Photosynthetic Reaction Center, Deisenhofer, J. and Norris, J.R. (Eds.), Academic Press, San Diego, p. 23.Google Scholar
  6. Cogdell, R.J., Isaacs, N.W., Howard T.D., McLuskey, K., Fraser, N.J. and Prince, S.M. (1999) J. Bacteriol., 181, 3869–3879.Google Scholar
  7. Deisenhofer, J., Epp, O., Miki, K., Huber, R. and Michel, H. (1985) Nature, 318, 618–624.Google Scholar
  8. Egorova-Zachernyuk, T.A., Hollander, J., Fraser, N., Gast, P., Hoff, A.J., Cogdell, R., de Groot, H.J.M. and Baldus, M. (2001) J. Biomol. NMR, 19, 243–253.Google Scholar
  9. Hu, X. and Schulten, K. (1997) Phys. Today, 28–34.Google Scholar
  10. Hu, X., Damjanovic, A., Ritz, T. and Schulten, K. (1998) Proc. Natl. Acad. Sci. USA, 95, 5935–5941.Google Scholar
  11. Matthews, B., Fenna, R.E., Bolognesi, M.C., Schmid, M.F. and Olson, J.M. (1979) J. Mol. Biol., 131, 259.Google Scholar
  12. Matysik, J., Schulten, E., Alia., Gast, P., Raap, J., Lugtenburg, J., Hoff, A.J. and de Groot, H.J.M. (2001) Biol. Chem., 382, 1271–1276.Google Scholar
  13. McDermott, G., Prince, S.M., Freer, A.A., Hawthornthwaite-Lawless, A.M., Papiz, M.Z., Cogdell, R.J. and Isaacs, N.W. (1995) Nature, 374, 517–521.Google Scholar
  14. Prince, S.M., Papiz, M.Z., Freer, A.A., MacDermott, G., Hawthornthwaite-Lawless, A.M., Cogdell, R.J. and Isaacs, N.W. (1997) J. Mol. Biol., 268, 412–423.Google Scholar
  15. Raap, J., Winkel, C., de Wit, A.H.M., van Houten, A.H.H., Hoff, A.J. and Lugtenburg, J. (1990) Anal. Biochem., 191, 9–15.Google Scholar
  16. Scholes, G.D., Gould, I.R., Cogdell, R.J. and Fleming, G.R. (1999) J. Phys. Chem., B103, 2543–2553.Google Scholar
  17. Soede-Huijbregts, C., Cappon, J.J., Boender, G.J., Raap, J., Gast, P., Hoff, A.J., Lugtenburg, J. and de Groot, H.J.M. (1998) In Photosynthesis: Mechanisms and Effects, Garab, G. (Ed.), Kluwer Academic Publishers, Dordrecht, pp. 759–762.Google Scholar
  18. van Oijen, A.M., Ketelaars, M., Köhler, J., Aartsma, T.J. and Schmidt, J. (1999) Science, 285, 400–402.Google Scholar
  19. Vinogradov, E., Madhu P.K. and Vega, S. (1999) Chem. Phys. Lett., 314, 443–450.Google Scholar
  20. Vinogradov, E., Madhu P.K. and Vega, S. (2000) Chem. Phys. Lett., 329, 207–214.Google Scholar
  21. Zhang, W.M., Meier, T., Chernyak, V. and Mukamel, S., (1998) J. Chem. Phys., 108, 7763–7774.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Alia
    • 1
  • Jörg Matysik
    • 1
  • Ido de Boer
    • 1
  • Peter Gast
    • 2
  • Hans J. van Gorkom
    • 2
  • Huub J.M. de Groot
    • 1
  1. 1.Leiden Institute of ChemistryGorlaeus LaboratoriaLeidenThe Netherlands
  2. 2.Department of Biophysics, Huygens LaboratoriumLeidenThe Netherlands

Personalised recommendations