Journal of Biomolecular NMR

, Volume 28, Issue 2, pp 117–130 | Cite as

GFT NMR Experiments for Polypeptide Backbone and 13Cβ Chemical Shift Assignment

Abstract

(4,3)D, (5,3)D and (5,2)D GFT triple resonance NMR experiments are presented for polypeptide backbone and 13Cβ resonance assignment of 15N/13C labeled proteins. The joint sampling of m = 2, 3 or 4 indirect chemical shift evolution periods of 4D and 5D NMR experiments yields the measurement of 2m − 1 linear combinations of shifts. To obtain sequential assignments, these are matched in corresponding experiments delineating either intra or interresidue correlations. Hence, an increased set of matches is registered when compared to conventional approaches, and the 4D or 5D information allows one to efficiently break chemical shift degeneracy. Moreover, comparison of single-quantum chemical shifts obtained after a least squares fit using either the intra or the interresidue data demonstrates that GFT NMR warrants highly accurate shift measurements. The new features of GFT NMR based resonance assignment strategies promise to be of particular value for establishing automated protocols.

automated protein NMR assignment GFT NMR spectroscopy high throughput protein structure structural genomics 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Astrof, N.S., Lyon, C.E. and Griffin, R.G. (2001) J. Magn. Reson., 152, 303–307.Google Scholar
  2. Bax, A. (2003) Protein Sci., 12, 1–16.Google Scholar
  3. Bersch, B., Rossy, E., Coves, J. and Brutscher, B. (2003) J. Biomol. NMR, 27, 57–67.Google Scholar
  4. Bodenhausen, G. and Ernst, R.R. (1982) J. Am. Chem. Soc., 104, 1304–1309.Google Scholar
  5. Boelens, R., Burgering, M., Fogh, R.H. and Kaptein, R. (1994) J. Biomol. NMR, 4, 201–213.Google Scholar
  6. Brutscher, B. (2002) J. Magn. Reson., 156, 155–159.Google Scholar
  7. Brutscher, B., Cordier, F., Simorre, J.-P., Caffrey, M.S. and Marion, D. (1995a) J. Biomol. NMR, 5, 202–206.Google Scholar
  8. Brutscher, B., Morelle, N., Cordier, F. and Marion, D. (1995b) J. Magn. Reson., B109, 238–242.Google Scholar
  9. Brutscher, B., Simorre, J.-P., Caffrey and Marion, D. (1994) J. Magn. Reson., B105, 77–82.Google Scholar
  10. Brutscher, B., Skrynnikov, N.R., Bremi, T., Bruschweiler, R. and Ernst, R.R. (1998) J. Magn. Reson., 130, 346–351.Google Scholar
  11. Cavanagh, J., Fairbrother, W.J., Palmer III, A.G. and Skelton, N.J. (1996) Protein NMR Spectroscopy, Wiley, New York.Google Scholar
  12. Ding, K. and Gronenborn, A.M. (2002) J. Magn. Reson., 156, 262–268.Google Scholar
  13. Frydman, L., Scherf, T. and Lupulescu, A. (2002) Proc. Natl. Acad. Sci. USA, 99, 15858–15862.Google Scholar
  14. Grage, H. and Akke, M. (2003) J. Magn. Reson., 162, 176–188.Google Scholar
  15. Grzesiek, S. and Bax, A. (1992) J. Am. Chem. Soc, 114, 6291–6293.Google Scholar
  16. Gutmanas, A., Jarvoll, P., Orekhov, V.Y. and Billeter, M. (2002) J. Biomol. NMR, 24, 191–201.Google Scholar
  17. Hu, H., Van, Q.N., Mandelshtam, V.A. and Shaka, A.J. (1998) J. Magn. Reson., 134, 76–87.Google Scholar
  18. Kay, L.E., Keifer, P. and Saarinen, T. (1992) J. Am. Chem. Soc., 114, 10663–10665.Google Scholar
  19. Kim, S. and Szyperski, T. (2003) J. Am. Chem. Soc., 125, 1385–1393.Google Scholar
  20. Kozminski, W. and Zhukov, I. (2003) J. Biomol. NMR, 26, 157–166.Google Scholar
  21. Kupce, E. and Freeman, R. (1993) J. Magn. Reson. Ser A, 105, 310–315.Google Scholar
  22. Kupce, E. and Freeman, R. (2003) J. Biomol. NMR, 25, 349–354.Google Scholar
  23. Liu, G., Mills, J.L., Hess, T.A., Kim, S., Skalicky, J.J., Sukumaran, D.K., Kupce, E., Skerra, A. and Szyperski, T. (2003) J. Biomol. NMR, 27, 187–188.Google Scholar
  24. Löhr, F. and Rüterjans, H. (1995) J. Biomol. NMR, 6, 189–197.Google Scholar
  25. Luca, S. and Baldus, M. (2002) J. Magn. Reson., 159, 243–249.Google Scholar
  26. Meissner, A. and Sørensen, O.W. (2001) J. Magn. Reson., 150, 100–104.Google Scholar
  27. Monleon, D., Colson, K., Moseley, H.N.B., Anklin, C., Oswald, R., Szyperski, T. and Montelione, G.T. (2002) J. Struct. Funct. Genomics, 2, 93–101.Google Scholar
  28. Montelione, G.T., Zheng, D., Huang, Y., Gunsalus, C. and Szyperski, T. (2000) Nat. Struct. Biol., 7, 982–984.Google Scholar
  29. Moseley, H.N.M., Tejero, R., Zimmerman, D.E., Celda, B., Nilsson, B. and Montelione, G.T. (2002) Meth. Enzymol., 339, 91–108.Google Scholar
  30. Pervushin, K., Riek, R., Wider, G. and Wüthrich, K. (1997) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.Google Scholar
  31. Reif, B., Hennig, M. and Griesinger, C. (1997) Science, 276, 1230–1233.Google Scholar
  32. Rexroth, A., Schmidt, P., Szalma, S., Geppert, T., Schwalbe, H. and Griesinger, C. (1995) J. Am. Chem. Soc., 117, 10389–10391.Google Scholar
  33. Schmieder, P., Stern, A.S., Wagner, G. and Hoch, J.C. (1994) J. Biomol. NMR, 4, 483–490.Google Scholar
  34. Simorre, J.-P., Brutscher, B., Caffrey, M.S. and Marion, D. (1994) J. Biomol. NMR, 4, 325–333.Google Scholar
  35. Sklenar, V., Dieckmann, T., Butcher, S.E. and Feigon, J. (1998) J. Magn. Reson., 130, 119–124.Google Scholar
  36. Szyperski, T., Banecki, B., Braun, D. and Glaser, R.W. (1998) J. Biomol. NMR, 11, 387–405.Google Scholar
  37. Szyperski, T., Braun, D., Banecki, B. and Wüthrich, K. (1996) J. Am. Chem. Soc., 118, 8146–8147.Google Scholar
  38. Szyperski, T., Braun, D., Fernandez, C., Bartels, C. and Wüthrich, K. (1995) J. Magn. Reson., B108, 197–203.Google Scholar
  39. Szyperski, T., Pellecchia, M. and Wüthrich, K. (1994) J. Magn. Reson., B 105, 188–191.Google Scholar
  40. Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993a) J. Biomol. NMR, 3, 127–132.Google Scholar
  41. Szyperski, T., Wider, G., Bushweller, J.H. and Wüthrich, K. (1993b) J. Am. Chem. Soc., 115, 9307–9308.Google Scholar
  42. Szyperski, T., Yeh, D.C., Sukumaran, D.K., Moseley, H.N.B. and Montelione, G.T. (2002) Proc. Natl. Acad. Sci. USA, 99, 8009–8014.Google Scholar
  43. Xia, Y., Arrowsmith, C. and Szyperski, T. (2002) J. Biomol. NMR, 24, 41–50.Google Scholar
  44. Wall, M.R. and Neuhauser, D. (1995) J. Chem. Phys., 112, 8011–8022.Google Scholar
  45. Zweckstetter, M. and Bax, A. (2001) J. Am. Chem. Soc., 123, 9490–9491.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of ChemistryUniversity at Buffalo, The State University of New YorkBuffaloU.S.A.
  2. 2.The Northeast Structural Genomics ConsortiumUSA
  3. 3.Department of ChemistryRutgers UniversityPiscatawayU.S.A

Personalised recommendations