Journal of Materials Science: Materials in Medicine

, Volume 15, Issue 10, pp 1129–1134

Strontium substituted calcium phosphate biphasic ceramics obtained by a powder precipitation method

  • Hae-Won Kim
  • Young-Hag Koh
  • Young-Min Kong
  • Jun-Gu Kang
  • Hyoun-Ee Kim
Article

Abstract

Strontium (Sr) substituted calcium phosphate ceramics were fabricated using a powder precipitation method. The Sr ions were added up to 8 mol % to replace the Ca ions during the powder preparation. Composition analysis showed that the added Sr was not fully incorporated within the as-precipitated apatite structure, presumably being washed out during the powder preparation. After calcination, the Sr containing powders were crystallized into apatite and tricalcium phosphate (TCP), that is, biphasic calcium phosphates were formed. The amount of TCP increased with increasing the Sr addition. The lattice parameters of the calcined powders increased gradually with Sr substitution in both the a- and c-axis. However, the obtained values deviated slightly from the calculated ones at higher Sr additions (>4%) due to the partial substitution of Sr ions. The microstructure of the sintered bodies changed with the Sr addition due to the formation of TCP. The Vickers hardness increased slightly from 5.2 to 5.5 MPa with increasing Sr addition, which was driven by the HA+TCP biphasic formation. The osteoblast-like cells cultured on the Sr-substituted biphasic sample spread and grew actively. The proliferation rate of the cells was higher in the samples containing more Sr. The alkaline phosphate activity of the cells was expressed to a higher degree with increasing Sr addition. These observations confirmed the enhanced cell viability and differentiation of the Sr-substituted biphasic calcium phosphate ceramics.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. HENCH, J. Am. Ceram. Soc. 74 (1991) 1487.Google Scholar
  2. 2.
    R. Z. LEGEROS, Prog Cryst. Grow. Char 4 (1981) 1.Google Scholar
  3. 3.
    I. C. ELLIOT, "Studies in Inorganic Chemistry 18: Structure and chemistry of the Apetites and Other Calcium Orthophosphates" (Elsevier, Amsterdam, 1994) p. 111Google Scholar
  4. 4.
    D. K. SMITH, "Hydroxyapatite and Related Materials", edited by P. W. Brown and B. Constantz (CRC Press, London, 1994) p. 29.Google Scholar
  5. 5.
    F. S. KAPLAN, W. L. HAYES, T. M. KEAVENY, A. BOSKEY, T. A. EINHORN and J. P. IANNOTTI, in "Orthopedic Basic Research", edited by S. P. Simon (American Academy of Orthopedic Surgeons, 1994) p. 127.Google Scholar
  6. 6.
    E. SHORR and A. C. CARTER, Bull Hosp. Joint. Dis. Orthop. Inst. 13 (1952) 59.Google Scholar
  7. 7.
    F. E. MCSASLIN and J. M. JANES, Proc. Staff. Meet. Mayo Clin. 34 (1959) 329.Google Scholar
  8. 8.
    P. J. MARIE, M. T. GARBA, M. HOTT and L. MIRAVET, Miner. Electrolyte Metab. 11 (1985) 5.Google Scholar
  9. 9.
    P. J. MARIE and M. HOTT, Metabolism 35 (1986) 547.Google Scholar
  10. 10.
    E. F. FERRARO, R. CARR and K. ZIMMERMAN, Calcif. Tissue. Int. 35 (1983) 258.Google Scholar
  11. 11.
    E. CANALIS, M. HOTT, P. DELOFFRE, Y. TSOUDEROS and P. J. MARIE, Bone 18 (1996) 517.Google Scholar
  12. 12.
    K. SUDARSANAN and R. A. YOUNG, Acta. Cryst. B28 (1972) 3668.Google Scholar
  13. 13.
    J. CHRISTOFFERSEN, N. KOLTHOFF and O. BARENHOLDT, Bone 20 (1997) 47.Google Scholar
  14. 14.
    L. LEROUX and J. L. LACOUT, J. Mater. Res. 16 (2001) 171.Google Scholar
  15. 15.
    D. DONAZZON, G. DECHAMBRE and J. L. LACOUT, Ann. Chim. Sci. Mat. 23 (1998) 53.Google Scholar
  16. 16.
    H.-W. KIM, Y.-J. NOH, Y.-H. KOH and H.-E. KIM, J. Mater. Sci.: Mater. Med. 14 (2003) 899.Google Scholar
  17. 17.
    J. C. RENDON-ANGELES, K. YANAGISAWA, N. ISHIZAWA and S. OISHI, Chem. Mater. 12 (2000) 2143.Google Scholar
  18. 18.
    R. Z. LEGEROS, R. KIJKOWSKA, M. TUNG and J. P. LEGEROS, "Proceedings of the 5th International Symposium, edited by R. W. Fearnhead (Elsevier Science Ltd., 1989) p. 393.Google Scholar
  19. 19.
    R. L. COLLIN, J. Am. Chem. Soc. 81 (1959) 5275.Google Scholar
  20. 20.
    S. RAYNAUD, E. CHAMPION, J. P. LAFON and D. BERNACHE-ASSOLLANT, Biomaterials 23 (2002) 1081.Google Scholar
  21. 21.
    A. ROYER, J. C. VIGUIE, M. HEUGHEBAERT and J. C. HEUGHEBAERT, J. Mater. Sci.: Maztr. Med. 4 (1993) 76.Google Scholar
  22. 22.
    N. ALI, N. N. J. ROWE and N. M. TEICH, J. Bone Mine. Res. 11 (1996) 512.Google Scholar
  23. 23.
    S. OZAWA and S. KASUGAL, Biomaterials 17 (1996) 23.Google Scholar
  24. 24.
    R. F. ELLINGER, E. B. NERY and K. L. LYNCH, Int. J. Periodont. Restor. Dent. 3 (1986) 223.Google Scholar
  25. 25.
    N. PASSUTI, G. DACULSI, J. M. ROGEZ, S. MARTIN and J. V. BAINVEL, Clin. Orthop. Re1 Res. 248 (1989) 169.Google Scholar
  26. 26.
    G. DACULSI, M. BAGOT D'ARC, P. CORLIEU and M. GERSDORFF, Ann. Otol. Rhinol Laryngol. 101 (1990) 669.Google Scholar
  27. 27.
    D. C. MOORE, M. W. CHAPMAN and D. MANSKE, Clin. Orthop. Res. 5 (1987) 356.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Hae-Won Kim
    • 1
  • Young-Hag Koh
    • 1
  • Young-Min Kong
    • 1
  • Jun-Gu Kang
    • 1
  • Hyoun-Ee Kim
    • 1
  1. 1.Seoul National UniversitySeoulKorea

Personalised recommendations