Bonelike apatite formation on niobium metal treated in aqueous NaOH

  • Reut Godley
  • David Starosvetsky
  • Irena Gotman


The essential condition for a biomaterial to bond to the living bone is the formation of a biologically active bonelike apatite on its surface. In the present work, it has been demonstrated that chemical treatment can be used to create a calcium phosphate (CaP) surface layer, which might provide the alkali treated Nb metal with bone-bonding capability. Soaking Nb samples in 0.5 M NaOH, at 25 °C for 24 h produced a nano-porous ∼40 nm thick amorphous sodium niobate hydrogel layer on their surface. Immersion in a simulated body fluid (SBF) lead to the deposition of an amorphous calcium phosphate layer on the alkali treated Nb. The formation of calcium phosphate is assumed to be a result of the local pH increase caused by the cathodic reaction of oxygen reduction on the finely porous surface of the alkali-treated metal. The local rise in pH increased the ionic activity product of hydroxyapatite and lead to the precipitation of CaP from SBF that was already supersaturated with respect to the apatite. The formation of a similar CaP layer upon implantation of alkali treated Nb into the human body should promote the bonding of the implant to the surrounding bone. This bone bonding capability could make Nb metal an attractive material for hard tissue replacements.


Apatite Calcium Phosphate Simulated Body Fluid Amorphous Calcium Phosphate Phosphate Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    F. PIPINO. J Orthpaed. Traumatol. 1 (2000) 3.Google Scholar
  2. 2.
    A. NANCI, J. D. WUEST, L. PERU, P. BRUNET, Y. SHARMA, S. ZALZAL and M. D. MCKEE, J. Biomed. Mater. Res. 40 (1998) 324.Google Scholar
  3. 3.
    H. B. WEN, I. R. WIJN, P. Z. CUI and K. GROOT, ibid. 41 (1998) 227.Google Scholar
  4. 4.
    H. M. KIM, P. MIYAJI, T. KOKUBO and T. NAKAMURA, ibid. 32 (1996) 409.Google Scholar
  5. 5.
    H. M. K1M, F MIYAJI, T. KOKUBO, S. NISHIGUCHI and T. NAKAMURA, ibid. 45 (1999) 100.Google Scholar
  6. 6.
    H. M. KIM, H. TAKADAMA, F. MIYAJI and T. KOKUBO, J Mater. Sci.: Mater Med. 11 (2000) 555.Google Scholar
  7. 7.
    R. ROSENBERG, D. STAROSVETSKY and I. GOTMAN, J. Mazer. Sci. Lezz. 22 (2003) 29.Google Scholar
  8. 8.
    T. MIYAZAKI, H. M. KIM, P. MIYAJI, T. KOKUBO, H. KATO and T. NAKAMURA, J. Biomed. Mazer. Res. 50 (2000) 35.Google Scholar
  9. 9.
    B. H. LEE, Y. D. KIM, I. H. SHIN and K. H. LEE, ibid 61 (2002) 466.Google Scholar
  10. 10.
    T. HIMENO, M. KAWASHITA, H. M. KIM, T. KOKUBO and T. NAKAMURA, Key Eng. Mazer. 218-220 (2002) 641.Google Scholar
  11. 11.
    B. C. YANG, I. WENG, X. D. LI and D. ZHANG, J. Biomed. Mazer. Res. 47 (1999) 213.Google Scholar
  12. 12.
    F. J. G. CUISINIER, Curr Opin. Solid State Mater. Sci. 1 (1996) 436.Google Scholar
  13. 13.
    H. A. LOWENSTAM and S. WEINER, Science 227 (1985) 51.Google Scholar
  14. 14.
    F. BETTS, N. C. BLUMENTHAL and A. S. POSNER, J. Cryst. Growth 53 (1981) 63.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Reut Godley
    • 1
  • David Starosvetsky
    • 1
  • Irena Gotman
    • 1
  1. 1.Faculty of Materials EngineeringTechnionIsrael

Personalised recommendations