Journal of Materials Science: Materials in Medicine

, Volume 15, Issue 10, pp 1065–1071

Mechanical characterisation of a bone defect model filled with ceramic cements

  • A. Gisep
  • S. Kugler
  • D. Wahl
  • B. Rahn
Article

Abstract

Ceramic bone substitute materials are often used to fill defects in comminuted articular fractures. In an in vivo study [1], calcium phosphate cements have been injected into highly loaded slot defects in the proximal tibial metaphysis. During healing, cracks were formed mostly in the proximal anterior aspect of the implanted cement and wedge-like gaps formed between the tibial plateau and the cement. Mechanical ex vivo tests were done to investigate the mechanical competence of the bone cement in such a defect situation. Entirely filled defects were loaded with up to 4.5 kN until they failed. Cyclic loading of the proximal tibiae caused micro fragmentation of the cement after 1000 cycles at 1.5–2.0 kN load. This aspect was comparable to cement fragmentation observed in vivo. Large defects in highly loaded areas should therefore additionally be stabilised with metallic implants. The ceramic cement can only be used as a filler material, which can be replaced by new bone upon resorption.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. GISEP, R. WIELING, M. BOHNER, S. MATTER, E. SCHNEIDER and B. RAHN, J Biomed. Mazer. Res. 66A (2003) 532.Google Scholar
  2. 2.
    P. D. BURSTE1N, S.R. COHEN, R. HUDGINS, W. BOYDSTON and C. SIMMS, Plast. Reconstr. Surg 104(1999) 1270.Google Scholar
  3. 3.
    K. F. DICKSON, I. FRIEDMAN, I. G. BUCHHOLZ and F. D. FLANDRY, J. Trauma 53(2002) 1103.Google Scholar
  4. 4.
    P. LOBENH0FFER, T. GERICH F. WITTE and H. TSCHERNE, J Orthop. Trauma 16(2002) 143.Google Scholar
  5. 5.
    T. A. SCHILDHAUER, T. W. BAUER, C. JOSTEN and G. MUHR, ibid. 14(2000) 309.Google Scholar
  6. 6.
    K. I. BOZIC, P. A. OLAZER, D. ZURAKOWSKI, B. I. SIMON, S. I. LIPSON and W. C. HAYES, Spine 24(1999) 2127.Google Scholar
  7. 7.
    B. R. CONSTANTZ, I. C. ISON, M. T. FULMER, R. D. POSER, S. T. SM1TH, M. VANWAGONER, I. ROSS, S. A. GOLDSTEIN, J. B. JUPITER and D. I. ROSENTHAL, Science 267(1995) 1796.Google Scholar
  8. 8.
    K. A. HING, S. M. BEST, K. E. TANNER, P. A. REVELL and W. BONFIELD, P I. Mech Eng. H. 212(1998) 437.Google Scholar
  9. 9.
    P. D. COSTANTINO, C. D. FRIEDMAN, K. JONES, L. C. CHOW and G. A. SISSON, Plast. Reconstr. Surg 90(1992) 174.Google Scholar
  10. 10.
    E. P. FRANKENBURG, S. A. GOLDSTEIN, T. W. BAUER, S. A. HARRIS and R. D. POSER, J. Bone. Joint Surg Am. 80 (1998) 1112.Google Scholar
  11. 11.
    S.-W. HA and E. WINTERMANTEL, in "Biokompatible Werkstoffe und Bauweisen" (Springer, Berh, 1996) p. 315.Google Scholar
  12. 12.
    J. LEMAITRE, A. A. MIRTCHI and A. MORTIER, Silic.Ind. 9 (1987) 141.Google Scholar
  13. 13.
    J. LEMAITRE, E. MUNTING and A. A. MIRTCHI, Rev. Stomatol. Chir. Maxillofac. 93(1992) 163.Google Scholar
  14. 14.
    K. OHURA, M. BOHNER, P. HARDOUIN, I. LEMAITRE, G. PASQUIER and B. FLAUTRE, J.Biomed. Mater. Res. 30(1996) 193.Google Scholar
  15. 15.
    G. N. DUDA, K. ECKERT-HUBNER, R. SOKIRANSKI, A. KREUTNER, R. MILLER and L. CLAES, J.Biomech. 31(1998) 201.Google Scholar
  16. 16.
    B. SURBER, A. GISEP and B. RAHN, Diploma Thesis, ETH Zürich (2000) 26.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. Gisep
    • 1
  • S. Kugler
    • 2
  • D. Wahl
    • 1
  • B. Rahn
    • 1
  1. 1.AO Research InstituteClavadelerstrasseSwitzerland
  2. 2.Zürcher Hochschule WinterthurSwitzerland

Personalised recommendations