Journal of Materials Science: Materials in Medicine

, Volume 15, Issue 9, pp 1021–1029 | Cite as

Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating

  • E. P. Briggs
  • A. R. Walpole
  • P. R. Wilshaw
  • M. Karlsson
  • E. Pålsgård
Article

Abstract

Thin, nano-porous, highly adherent layers of anodised aluminium formed on the surface of titanium alloys are being developed as coatings for metallic surgical implants. The layers are formed by anodisation of a 1–5 μm thick layer of aluminium which has been deposited on substrate material by electron beam evaporation. The surface ceramic layer so produced is alumina with 6–8 wt % phosphate ions and contains ∼5×108 cm−2 pores with a ∼160 nm average diameter, running perpendicular to the surface. Mechanical testing showed the coatings' shear and tensile strength to be at least 20 and 10 MPa, respectively. Initial cell/material studies show promising cellular response to the nano-porous alumina. A normal osteoblastic growth pattern with cell number increasing from day 1 to 21 was shown, with slightly higher proliferative activity on the nano-porous alumina compared to the Thermanox control. Scanning electron microscopy (SEM) examination of the cells on the porous alumina membrane showed normal osteoblast morphology. Flattened cells with filopodia attaching to the pores and good coverage were also observed. In addition, the pore structure produced in these ceramic coatings is expected to be suitable for loading with bioactive material to enhance further their biological properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. KIRKWOOD, in “Time of Our Lives” (Weidenfeld and Nicholson, 1999).Google Scholar
  2. 2.
    L. L. HENCH, MRS Bull. 24 (1999) 13.Google Scholar
  3. 3.
    E. W. ABEL, in “Hip Arthroplasty” (Distance Learning Section, Department of Orthopaedic and Trauma Surgery, University of Dundee, 1997).Google Scholar
  4. 4.
    D. MUSTER, M. HAGE-ALI, K. T. RIE, T. STUCKY, A. CORNET and D. MAINARD, MRS Bull. 25 (2000) 25.Google Scholar
  5. 5.
    S. D. COOK, K. A. WALSH and R. J. HADDAD JR., Clin. Orthop. Rei. Res. 193 (1985) 271.Google Scholar
  6. 6.
    G. L. MAISTRELLI, N. MAHOMED, D. GARBUZ, FORNASIER, I. J. HARRINGTON and A. BINNINGTON, J Bone Joint Sur. 748 (1992) 452.Google Scholar
  7. 7.
    M. WEI, A. J. RUYS, M. V. SWAIN, S. H. KIM, B. K. MILTHORPE and C. C. SORRELL, J. Mater. Sci.: Mater. Med. 10 (1993) 401.Google Scholar
  8. 8.
    K. A. THOMAS, J. F. KAY, S. D. COOK and M. JARCHO, J Biomed. Mater. Res. 21 (1987) 1395.Google Scholar
  9. 9.
    L. L. HENCH and O. ANDERSSON, in “An Introduction to Bioceramics”, edited by L. L. Hench and J. Wilson (World Scientific Publishing Co. Pte. Ltd., Singapore, 1993) p. 239.Google Scholar
  10. 10.
    W. R. LACEFIELD, in “Bioceramics. Material Characteristics vs. In Vivo Behaviour”, edited by P. Ducheyne and J. E. Lemons (The New York Academy of Science, New York, 1988) p. 72.Google Scholar
  11. 11.
    L. L. HENCH and E. C. ETHRIDGE, in “Biophysics and engineering series”, Vol. 4 (Academic Press, New York, 1982).Google Scholar
  12. 12.
    B. M. WROBLEWSKI, P. D. SINEY and P. A. FLEMING, in “Total Hip Arthroplasty Outcomes”, edited by G. A. M. Finerman, F. J. Dorey, P. Grigoris and H. A. McKellop (Churchill Livingstone, New York, 1998) p. 15.Google Scholar
  13. 13.
    L. L. HENCH and J. WILSON (eds.), in “Clinical Performance of Skeletal Prostheses” (Chapman and Hall, London, 1996).Google Scholar
  14. 14.
    M. NIINOMI, in “Structural Biomaterials for the 21st Century”, edited by M. Niinomi, T. Okabe, E. M. Taleff, D. R. Lesuer and H. E. Lippard (TMS,2001).Google Scholar
  15. 15.
    B. D. RATNER, in “Titanium in Medicine”, edited by D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen (Springer, Berlin, 2001) p. 2.Google Scholar
  16. 16.
    D. F. WILLIAMS, in “Titanium in Medicine”, edited by D. M. Brinette, P. Tengvall, M. Textor and P. Thomsen (Springer, Berlin, 2001) Foreword VII-VIII, p. 14, p. 561.Google Scholar
  17. 17.
    L. L. HENCH, in “Bioceramics-7”, edited by Ö. H. Anderson and A. Yli Urpo (Butterworth-Heinemann, Oxford, England, 1994) p. 3.Google Scholar
  18. 18.
    O. JESSENSKY, F. MULLER and U. GOSELE, J Electrochem. Soc. 145 (1998) 3735.Google Scholar
  19. 19.
    G. E. THOMSON, Thin Solid Films 297 (1997) 192.Google Scholar
  20. 20.
    S. F. HULBERT, in “An Introduction to Bioceramics”, edited by L. L. Hench and J. Wilson (World Scientific Publishing Co. Pte. Ltd., Singapore, 1993) p. 25.Google Scholar
  21. 21.
    P. CHRISTEL, A. MEUNIER, J.-M. DORLOT, J.-M. CROLET, J. WITVOET, L. SEDEL and P. BOUTIN, in “Bioceramics: Material Characteristics vs. In Vivo Behaviour”, edited by P. Ducheyne and J. E. Lemons (The New York Academy of Science, New York, 1988) p. 234.Google Scholar
  22. 22.
    L. L. HENCH, J Am. Ceram. Soc. 74 (1991) 1487.Google Scholar
  23. 23.
    D. SHI and G. JIANG, Mater. Sci. Eng. 6 (1998) 175.Google Scholar
  24. 24.
    J. CAVLHEIRO and M. BRAS, Bioceramics 11 (1998) 65.Google Scholar
  25. 25.
    E. VERNE, C. VITALE BROVARONE, C. MOISESCU, E. GHISOLFI and E. MARMO, Acta Materiala 48 (2000) 4667.Google Scholar
  26. 26.
    M. HAMADOUCHE, A. MEUNIER, D. C. GREENSPAN, C. BLANCHAT, J. P. ZHONG, G. P. LA TORRE and L. SEDEL, Key Eng. Mater. 192 (2000) 413.Google Scholar
  27. 27.
    M. HAMADOUCHE, R. S. NIZARD, A. MEUNIER, C. BLANCHAT, P. MASQUELIER and L. SEDEL, in “Bioceramics II”, edited by R. Z. Le Geros and J. P. Le Geros (New York, 1998) p. 427.Google Scholar
  28. 28.
    U. GROSS, H.-I. SCHMITZ and V. STRUNZ, in “Bioceramics: Material Characteristics vs. In Vivo Behaviour”, edited by P. Ducheyne and J. E. Lemons (The New York Academy of Science, New York, 1998) p. 211.Google Scholar
  29. 29.
    T. SAWITOWSKI, W. BRANDAU, A. FISCHER, A. HEILMANN and G. SCHMID, Mater. Res. Soc. Symp. Proc. 581 (2000) 523.Google Scholar
  30. 30.
    G. E. THOMPSON and G. C. WOOD, in “Treatise on Materials Science and Technology”, Vol. 23, edited by J. C. Scully (Academic Press, New York, 1983) p. 249.Google Scholar
  31. 31.
    G. E. THOMPSON, Thin Solid Films 297 (1997) 192.Google Scholar
  32. 32.
    C. ALVEY, PhD Thesis, University of Manchester (1978).Google Scholar
  33. 33.
    Whatman Data Sheet S9036-2092, in “Anopore™ Inorganic Membranes” (Whatman International Ltd., Maidstone, Kent, England).Google Scholar
  34. 34.
    A. CIGADA, M. CABRINI and P. PEDEFERRI, J Mater. Sci.: Mater. Med. 3 (1992) 408.Google Scholar
  35. 35.
    R. C. FURNEAUX, W. R. RIGBY and A. P. DAVIDSON, Left Nature 337 (1989) 147.Google Scholar
  36. 36.
    L.J. LANZEROTTI, W. L. BROWN, J. M. POATE and W. M. AUGUSTYNIAK, Nature 272 (1978) 433.Google Scholar
  37. 37.
    H. MASUDA, K. YADA and A. OSAKA, Jap. J Appl. Phys. Part 2 — Left. 37 (1998) 1340.Google Scholar
  38. 38.
    L. DI SILVIO, PhD thesis, University of London (1995).Google Scholar
  39. 39.
    G. R. NAKAYAMA, M. C. CATON, M. P. NOVA and Z. PARANDOOSH, J. Immunol. Meth. 204 (1997) 205.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • E. P. Briggs
    • 1
  • A. R. Walpole
    • 1
  • P. R. Wilshaw
    • 1
  • M. Karlsson
    • 2
  • E. Pålsgård
    • 2
  1. 1.Department of MaterialsUniversity of OxfordOxford OX1 3PHUK
  2. 2.Center For Surface Biotechnology, BMC, Husarg. 3, D7:3, Box 577, 751 23UppsalaSweden

Personalised recommendations