Effect of lattice constant of zinc oxide on antibacterial characteristics

  • Osamu Yamamoto
  • Miyako Komatsu
  • Jun Sawai
  • Zenbe-e Nakagawa

Abstract

Zinc oxide powders were heated in different atmospheres at 800 and 1400 °C, of which the characterization and the antibacterial activity were studied by X-ray diffractometry and the measurement of the change in electrical conductivity with bacterial growth. The diffraction peaks corresponding to zinc oxide with hexagonal type structure were detected in all samples, which shifted in low-angle side with the increase in the oxidizability of atmosphere during heat-treatment. From the results of calculating lattice constants, a0 and c0, it was found that the value of c0 in hexagonal structure increased with the increase in the oxidizability of atmosphere. On the samples heated at 1400 °C, the changes of the c0 value were less than those at 800 °C. However, no change of the a0 value showed, irrespective of atmosphere and temperature. Hydrogen peroxide that contributes to the occurrence of antibacterial activity was found to generate from all samples, and the generation amount increased with the increase of c0 value; incidently the amount in the samples heated at 1400 °C was less than that at 800 °C. The antibacterial activity of zinc oxide increased with the increase of c0 value; that is, it was found that the value of c0 in crystal structure affected the antibacterial activity of zinc oxide.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. R. Beuchat, J. Food Prot. 59 (1996) 204.Google Scholar
  2. 2.
    R. Tauxe, H. Kruse, C. Hedberg, M. Potter, J. Madden and K. Wachsmuth, ibid. 60 (1997) 1400.Google Scholar
  3. 3.
    T. A. Bellar, J. J. Lichtenberg and R. C. Kroner, J. Am. Water Works Assoc. 66 (1974) 703.Google Scholar
  4. 4.
    J. Kim, M. R. Marshall, X. U. Du, W. S. Otwell and C. I. Wei, J. Agricult. Food Chem. 47 (1999) 3586.CrossRefGoogle Scholar
  5. 5.
    J. Sawai, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Jpn 28 (1995) 288.Google Scholar
  6. 6.
    J. Sawai, H. Kojima, H. Igarashi, A. Hashimoto, S. Shoji, A. Takehara, T. Sawaki, T. Kokugan and M. Shimizu, ibid. 30 (1997) 1034.Google Scholar
  7. 7.
    J. Sawai, H. Kojima, F. Kano, H. Igarashi, A. Hashimoto, E. Kawada, T. Kokugan and M. Shimizu, W. J. Microbiol. Biotech. 14 (1998) 773.CrossRefGoogle Scholar
  8. 8.
    J. Sawai, M. Satoh, H. Horikawa, H. Shiga and H. Kojima, J. Food Prot. 64 (2001) 1579.PubMedGoogle Scholar
  9. 9.
    J. Sawai, H. Shiga and H. Kojima, Int. J. Food Microbiol. 71 (2001) 211.CrossRefPubMedGoogle Scholar
  10. 10.
    O. Yamamoto, J. Sawai and T. Sasamoto, Int. J. Inorg. Mater. 2 (2000) 451.CrossRefGoogle Scholar
  11. 11.
    O. Yamamoto, T. Shimura, J. Sawai, H. Kojima and T. Sasamoto, J. Ceram. Soc. Jpn 108 (2000) 156.Google Scholar
  12. 12.
    O. Yamamoto, T. Fukuda, M. Kimata, J. Sawai and T. Sasamoto, ibid. 109 (2001) 363.Google Scholar
  13. 13.
    O. Yamamoto, Int. J. Inorg. Mater. 3 (2001) 643.CrossRefGoogle Scholar
  14. 14.
    O. Yamamoto, M. Hotta, J. Sawai, T. Sasamoto and H. Kojima, J. Ceram. Soc. Jpn 106 (1998) 1007.Google Scholar
  15. 15.
    O. Yamamoto, K. Nakakoshi, J. Sawai, T. Sasamoto, H. Nakagawa and K. Miura, Carbon 39 (2001) 1643.CrossRefGoogle Scholar
  16. 16.
    O. Yamamoto and J. Sawai, Bull. Chem. Soc. Jpn 74 (2001) 1761.CrossRefGoogle Scholar
  17. 17.
    J. Sawai, E. Kawada, F. Kanou, H. Igarashi, A. Hashimoto, T. Kokugan and M. Shimizu, J. Chem. Eng. Jpn 29 (1996) 627.Google Scholar
  18. 18.
    M. Zhou, Z. Diwu, N. Panchuk-Voloshina and R. P. Haugland, Anal. Biochem. 253 (1997) 162.CrossRefPubMedGoogle Scholar
  19. 19.
    D. Goeckeritz, F. Friedrich and M. Yahya, Pharmazie 50 (1995) 437.Google Scholar
  20. 20.
    D. G. Thomas, J. Phys. Chem. Solids 3 (1957) 229.CrossRefGoogle Scholar
  21. 21.
    O. Yamamoto, J. Sawai, K. Nakakoshi, H. Nakagawa, K. Miura and T. Sasamoto, Transo 2000(191) (2000) 2.Google Scholar
  22. 22.
    G. Eden and R. Eden, IEEE Trans. Biomed. Eng. 31 (1984) 193.PubMedGoogle Scholar
  23. 23.
    J. Sawai, S. Shoji, H. Igarashi, A. Hashimoto, T. Kokugan, M. Shimizu and H. Kojima, J. Ferment Bioeng. 86 (1998) 521.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Osamu Yamamoto
    • 1
  • Miyako Komatsu
    • 2
  • Jun Sawai
    • 2
  • Zenbe-e Nakagawa
    • 1
  1. 1.Research Institute of Materials and Resources, Faculty of Engineering and Resource ScienceAkita UniversityAkitaJapan
  2. 2.Department of Applied ChemistryKanagawa Institute of TechnologyAtsugiJapan

Personalised recommendations