Phosphoserine – a convenient compound for modification of calcium phosphate bone cement collagen composites

  • A. Reinstorf
  • M. Ruhnow
  • M. Gelinsky
  • W. Pompe
  • U. Hempel
  • K.-W. Wenzel
  • P. Simon


Temporary bone replacement materials on the basis of calcium phosphates and hydroxyapatite (HAP) are used in surgery for filling bone defects. Components which are able to control the nucleation and crystal growth of HAP through their functional groups and which can additionally activate bone cells may be helpful in the development of materials with enhanced remodelling in vivo. In this study, the influence of O-phospho-L-serine (PS) on the materials properties of calcium phosphate bone cement composites was investigated. For up to an addition of 25 mg/g PS a strong increase in the stability of the cements under load was determined. The material was studied by scanning electron microscopy and transmission electron microscopy. A more dense microstructure and a plate-like morphology of the HAP-crystals were detected in the modified composites compared with the non-modified samples. By X-ray powder diffraction an inhibition of the dissolution of α-tricalcium phosphate (α-TCP) and dicalciumphosphate anhydrous (DCPA) particles was found. α-TCP and DCPA are the main constituents of the cement precursor. The results of cell culture studies using rat calvaria osteoblasts demonstrate a good viability of the cells on the PS-modified material. Furthermore, the proliferation and differentiation were found to be enhanced on the PS-modified material.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    S. Mann, in “Biomineralisation -Principles and Concepts in Bioinorganic Materials Chemistry” (Oxford University Press, 2001).Google Scholar
  2. 2.
    W. T. Butler, A. L. Ridall and M. D. Mckee, in “Principles of Bone Biology” (Bilezikian, Academic Press, New York, 1996) 167.Google Scholar
  3. 3.
    B. Ganss, R. H. Kim and J. Sodek, Crit. Rev. Oral Biol. Med. 10 (1999) 79.Google Scholar
  4. 4.
    J. Sodek, B. Ganss and M. D. Mckee, ibid. 11 (2000) 279.Google Scholar
  5. 5.
    E. S. Sorensen, P. Horup and T. E. Petersen, Protein Sci. 4 (1996) 2040.Google Scholar
  6. 6.
    G. K. Hunter, P. V. Hauschka, A. R. Poole, L. C. Rosenberg and H. A. Goldberg, Biochem. J. 317 (1996) 59.Google Scholar
  7. 7.
    G. K. Hunter and H. A. Goldberg, ibid. 302 (1994) 175.Google Scholar
  8. 8.
    R. A. Saavedra, BioEssays 16 (1994) 913.Google Scholar
  9. 9.
    T. Uemura, A. Nemoto, Y. Liu, H. Kojima and J. Dong, Mater. Sci. Eng. C 17 (2001) 33.Google Scholar
  10. 10.
    A. L. Boskey, L. Speviak, E. Paschalis, S. B. Doty and M. D. Mckee, Calcif. Tissue Int. 71 (2002) 145.Google Scholar
  11. 11.
    T. Aoba and E. C. Moreno, J. Coll. Interface Sci. 106 (1985) 110.Google Scholar
  12. 12.
    D. N. Misra, ibid. 194 (1997) 249.Google Scholar
  13. 13.
    L. Benaziz, A. Barroug, A. Legrouri, C. Rey and A. Lebugle, ibid. 238 (2001) 48.Google Scholar
  14. 14.
    A. L. Boskey and B. L. Dick, Calcif. Tissue Int. 49 (1991) 193.Google Scholar
  15. 15.
    N. Spanos, P. G. Klepitsianis and P. G. Koutsoukoson, J. Coll. Interface Sci. 236 (2001) 260.Google Scholar
  16. 16.
    S. Dahlin, J. Angström and A. Linde, Eur. J. Oral. Sci. 106 (1998) 239.Google Scholar
  17. 17.
    N. L. Huq, K. J. Cross and E. C. Reynolds, J. Mol. Model 6 (2000) 35.Google Scholar
  18. 18.
    B. Knepper-Nicolai, A. Reinstorf, I. Hofinger, K. Flade, R. Wenz and W. Pompe, Biomol. Eng. 19 (2002) 227.Google Scholar
  19. 19.
    F. C. M. Driessens, I. Khairoun, M. G. Boltong and J. A. Planell, in Proceedings of the 10th Internatinal Symposium on Ceramics in Medicine (Seydel & Rey, Paris) 1997, p. 279.Google Scholar
  20. 20.
    J. H. Bradt, M. Mertig, A. Teresiak and W. Pompe, Chem. Mater. 11 (1999) 2694.Google Scholar
  21. 21.
    F. C. M. Driessens, M. G. Boltong, O. Bermudez and J. A. Planell, J. Mater. Sci. Mater. Med. 4 (1993) 503.Google Scholar
  22. 22.
    Standard Test Method for Time of Setting of Hydraulic-Cement Paste by Gillmore Needles, Document Number: ASTM C266-99, ASTM International, 01-Nov-1999.Google Scholar
  23. 23.
    Powder Diffraction File -cards of the International Centre for Diffraction Data (ICDD).Google Scholar
  24. 24.
    M. Roth, Anal. Chem. 43 (1971) 880.Google Scholar
  25. 25.
    U. Geißler, U. Hempel, C. Wolf, D. Scharnweber, H. Worch and K.-W. Wenzel, J. Biomed. Mater. Res. 5 (2000) 752.Google Scholar
  26. 26.
    A. Scutt, A. Berg and H. Mayer, Anal. Biochem. 203 (1992) 290.Google Scholar
  27. 27.
    G. A. Currie, Br. J. Cancer 43 (1981) 335.Google Scholar
  28. 28.
    M. Tanahashi and T. Matsuda, J. Biomed. Mater. Res. 34 (1997) 305.Google Scholar
  29. 29.
    M. S. Mohan and E. H. Abbott, Inorg. Chem. 17 (1978) 2203.Google Scholar
  30. 30.
    F. C. M. Driessens, J. A. Planell, M. G. Boltong, I. Khairoun and M. P. Ginebra, Proc. Inst. Mech. Eng. Part: H J. Eng. Med. 207 (1993) 87.Google Scholar
  31. 31.
    D. H. Kohn, M. Sarmadi, J. I. Helman and P. H. Krebsbach, J. Biomed. Mater. Res. 60 (2002) 292.Google Scholar
  32. 32.
    C. Knabe, F. C. M. Driessens, J. A. Planell, R. Gildenhaar, G. Berger, D. Reif and R. Fitzner, ibid. 52 (2000) 498.Google Scholar
  33. 33.
    D. Becker, U. Geißler, U. Hempel, S. Bierbaum, D. Scharnweber, H. Worch and K.-W. Wenzel, ibid. 59 (2002) 516.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • A. Reinstorf
  • M. Ruhnow
    • 1
  • M. Gelinsky
    • 1
  • W. Pompe
    • 1
  • U. Hempel
    • 2
  • K.-W. Wenzel
    • 2
  • P. Simon
    • 3
  1. 1.Department of Materials Science, Max Bergmann Center of BiomaterialsDresden University of TechnologyDresdenGermany
  2. 2.Institute of Physiological ChemistryDresden University of TechnologyDresdenGermany
  3. 3.Max Planck Institute for Chemical Physics of SolidsDresdenGermany

Personalised recommendations