Advertisement

In vitro assessment of the biological response to nano-sized hydroxyapatite

  • J. HuangEmail author
  • S. M. Best
  • W. Bonfield
  • R. A. Brooks
  • N. Rushton
  • S. N. Jayasinghe
  • M. J. Edirisinghe
Article

Abstract

Nano-sized, rod-like hydroxyapatite (nHA) crystals were produced and shown to be phase-pure by X-ray diffraction analysis, as no secondary phases were observed. The nHA suspension was electrosprayed onto glass substrates using a novel processing routine to maintain nanocrystals of hydroxyapatite. The biocompatibility of nHA was determined using human monocyte-derived macrophages and human osteoblast-like (HOB) cell models. The release of lactate dehydrogenase (LDH) from human monocyte-derived macrophages was measured as an indicator of cytotoxicity. The release of the inflammatory cytokine, tumour necrosis factor alpha (TNF-α) from cells in the presence of nHA crystallites was used as a measure of the inflammatory response. Although there was some evidence of LDH release from human monocyte-derived macrophages when in contact with high concentrations of nHA crystals, there was no significant release of TNF-α. Moreover, nHA-sprayed substrates were able to support the attachment and the growth of HOB cells. These results indicate that nHA crystals may be suitable for intraosseous implantation and offers the potential to formulate enhanced composites for biomedical applications.

Keywords

Lactate Tumour Necrosis Factor Hydroxyapatite Inflammatory Cytokine Glass Substrate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. Bonfield, Metals Mater. 3 (1987) 712.Google Scholar
  2. 2.
    W. Bonfield, M. Wang and K. E. Tanner, Acta. Mater. 46 (1998) 2509.Google Scholar
  3. 3.
    C. Durucan and P. W. Brown, J. Biomed. Mater. Res. 51 (2000) 717.Google Scholar
  4. 4.
    W. Zhang, S. S. Liao and F. Z. Cui, Chem. Mater. 15 (2003) 3221.Google Scholar
  5. 5.
    J. Huang, S. N. Jayasinghe, S. M. Best, M. J. Edirisinghe, R. A. Brooks and W. Bonfield, J. Mater. Sci. Lett. 39 (2004) 1029.Google Scholar
  6. 6.
    J. Sun, Y. Tsuang, W. H. Chang, J. Li, H. Liu and F. Lin, Biomaterials 18 (1997) 683.Google Scholar
  7. 7.
    J. T. Ninomiya, J. A. Struve, C. T. Stelloh, J. M. Toth and K. E. Crosby, J. Ortho. Res. 19 (2001) 621.Google Scholar
  8. 8.
    Y. Harada, J. Wang, V. Doppalapudi, A. Willis, M. Jasty, W. Harris, M. Nagase and S. Goldring, J. Biomed. Mater. Res. 32 (1996) 19.Google Scholar
  9. 9.
    J. A. Wimhurst, R. A. Brooks and N. Rushton, J. Bone Joint Surg. 83-B (2001) 278.Google Scholar
  10. 10.
    S. N. Jayasinghe AND M. J. Edirisinghe, J. Mater. Res. Innovat. 7 (2003) 62.Google Scholar
  11. 11.
    S. N. Jayasinghe, M. J. Edirisinghe and T. Dewilde, ibid. 6 (2002) 92.Google Scholar
  12. 12.
    M. J. Dalby, L. Disilvio, E. J. Harper and W. Bonfield, Biomaterials 23 (2002) 569.Google Scholar
  13. 13.
    S. N. Jayasinghe and M. J. Edirisinghe, J. Aerosol. Sci. 33 (2002) 1379.Google Scholar
  14. 14.
    S. N. Jayasinghe and M. J. Edirisinghe, ibid. 35 (2004) 233.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. Huang
    • 1
    Email author
  • S. M. Best
    • 1
  • W. Bonfield
    • 1
  • R. A. Brooks
    • 2
  • N. Rushton
    • 2
  • S. N. Jayasinghe
    • 3
  • M. J. Edirisinghe
    • 3
  1. 1.Department of Materials Science and MetallurgyUniversity of CambridgeCambridgeUK
  2. 2.Orthopaedic Research UnitAddenbrooke's HospitalCambridgeUK
  3. 3.Department of Materials, Queen MaryUniversity of LondonLondonUK

Personalised recommendations