Cements from nanocrystalline hydroxyapatite

  • J. E. BarraletEmail author
  • K. J. Lilley
  • L. M. Grover
  • D. F. Farrar
  • C. Ansell
  • U. Gbureck


Calcium phosphate cements are used as bone substitute materials because they may be moulded to fill a void or defect in bone and are osteoconductive. Although apatite cements are stronger than brushite cements, they are potentially less resorbable in vivo. Brushite cements are three-component systems whereby phosphate ions and water react with a soluble calcium phosphate to form brushite (CaHPO4·2H2O). Previously reported brushite cement formulations set following the mixture of a calcium phosphate, such as β-tricalcium phosphate (β-TCP), with an acidic component such as H3PO4 or monocalcium phosphate monohydrate (MCPM). Due to its low solubility, hydroxyapatite (HA) is yet to be reported as a reactive component in calcium phosphate cement systems. Here we report a new cement system setting to form a matrix consisting predominantly of brushite following the mixture of phosphoric acid with nanocrystalline HA. As a result of the relative ease with which ionic substitutions may be made in apatite this route may offer a novel way to control cement composition or setting characteristics. Since kinetic solubility is dependent on particle size and precipitation temperature is known to affect precipitated HA crystal size, the phase composition and mechanical properties of cements made from HA precipitated at temperatures between 4 and 60 °C were investigated.


Apatite Hydroxyapatite Calcium Phosphate Calcium Phosphate Cement Cement System 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Y. Miyamoto, K. Ishikawa, H. Fukao, M. Sawada, M. Nagayama, M. Kon and K. Asaoka, Biomaterials 16 (1995) 855.Google Scholar
  2. 2.
    L. M. Grover, J. C. Knowles, G. J. P. Fleming and J. E. Barralet, ibid. 24 (2003) 4133.Google Scholar
  3. 3.
    M. Bohner, H. P. Merkle and J. Lemaître, J. Mater. Sci. Mater. Med. 11 (2000) 155.Google Scholar
  4. 4.
    M. Bohner, Injury, Int. J. Care Injured 31 (2000) S-D37-4.Google Scholar
  5. 5.
    Khairoun, F. C. M. Driessens, M. G. Boltong, J. A. Planell and R. Wenz, Biomaterials 20 (1999) 393.Google Scholar
  6. 6.
    Yokoyama, S. Yamamoto, T. Kawasaki, T. Kohgo and M. Nakasu, ibid. 23 (2002) 1091.Google Scholar
  7. 7.
    P. Frayssinet, L. Gineste, P. Conte, J. Fages and N. Rouquet, ibid. 19 (1998) 971.Google Scholar
  8. 8.
    W. E. Brown and L. C. Chow, US Pat. 4518430 (1985).Google Scholar
  9. 9.
    W. E. Brown and L. C. Chow, US Pat. 461053 (1986).Google Scholar
  10. 10.
    W. E. Brown and L. C. Chow, Proc. Am. Ceram. Soc. (1986) 352.Google Scholar
  11. 11.
    M. Bohner, Eur. Spine J. 10 (2001) S114.Google Scholar
  12. 12.
    M. Nilsson, E. Fernández, S. Sarda and L. Lidgren, J. Biomed. Mater. Res. 61 (2002) 600.Google Scholar
  13. 13.
    J. Lemaître, A. Mirtchi and A. Mortier, Silicates Industries 10 (1987) 141.Google Scholar
  14. 14.
    G. Vereecke and J. Lemaître, J. Cryst. Growth 104 (1990) 820.Google Scholar
  15. 15.
    M. Bohner, P. Van Landuyt, H. P. Merkle and J. Lemaître, J. Mater. Sci. Mater. Med. 8 (1997) 675.Google Scholar
  16. 16.
    M. Bohner, H. P. Merkle, P. Van Landuyt, G. Trophardy and J. Lemaître, ibid. 11 (2000) 111.Google Scholar
  17. 17.
    L. C. Chow and S. Takagi, J. Res. Natl. Inst. Stand. Technol. 106 (2001) 1029.Google Scholar
  18. 18.
    J. C. Elliot, in “Studies in Inorganic Chemistry -Structure and Chemistry of the Apatites and Other Calcium Orthophosphates” (Elsevier Science B.V., London, 1994).Google Scholar
  19. 19.
    C. Lui, Y. Huang, W. Shen and J. Cui, Biomaterials 22 (2001) 301.Google Scholar
  20. 20.
    M. Jarcho, R. L. Salsbury, M. B. Thomas and R. H. Doremus, J. Mater. Sci. 14 (1979) 142.Google Scholar
  21. 21.
    American National Standards Institute/American Dental Association, Specification number 61 for zinc carboxylate cement, J. Am. Dent. Assoc. 101 (1980) 660.Google Scholar
  22. 22.
    P. W. Brown and R. I. Martin, J. Phys. Chem. B 103 (1999) 1671.Google Scholar
  23. 23.
    K. Ishikawa, S. Takagi, L. C. Chow and Y. Ishikawa, J. Mater. Sci. Mater. Med. 6 (1995) 528.Google Scholar
  24. 24.
    C. Liu and W. Shen, ibid. 8 (1997) 803.Google Scholar
  25. 25.
    K. Ishikawa and K. Asaoka, J. Biomed. Mater. Res. 29 (1995) 1537.Google Scholar
  26. 26.
    L. C. Chow, S. Hirayama, S. Takagi and E. Parry, ibid. 53 (2000) 511.Google Scholar
  27. 27.
    U. Gbureck, J. E. Barralet, L. Radu, H. G. Klinger and R. Thull, J. Am. Ceram. Soc. (2003) (in press).Google Scholar
  28. 28.
    R. P. Del Real, J. G. C. Wolke, M. Vallet-Regiand and J. A. Jansen, Biomaterials 23 (2002) 3673.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. E. Barralet
    • 1
    Email author
  • K. J. Lilley
    • 1
  • L. M. Grover
    • 1
  • D. F. Farrar
  • C. Ansell
    • 2
  • U. Gbureck
    • 3
  1. 1.Biomaterials Unit, School of DentistryUniversity of BirminghamBirminghamUK
  2. 2.Smith and Nephew Group Research CentreYorkEngland
  3. 3.Department of Functional Materials in Medicine and DentistryUniversity of WürzbergGermany

Personalised recommendations