The effect of silica nanoparticulate coatings on cellular response

  • B. G. Cousins
  • P. J. Doherty
  • R. L. Williams
  • J. Fink
  • M. J. Garvey
Article

Abstract

The current techniques used to create patterned materials at the nanometer scale such as electron beam lithography are restricted to patterning small areas, which can be expensive and time consuming. A simple, cost-effective approach has been developed to create a reproducible surface topography to influence the cellular response. In this study, the cellular response of murine fibroblasts to 7, 14 and 21 nm colloidal silica particles were investigated over one, three and seven days and up to seven weeks. The surface topography and wettability of the surfaces were also studied. The results confirmed that silica particles create a nanoscale topography, which initiates a distinctive cellular response affecting the morphology, adhesion and proliferation of the fibroblasts. The effect was evident up to seven weeks with no adverse effects on cell viability.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. G. Flemming, C. J. Murphy, G. A. Abrams, S. L. Goodman and P. F. Nealey, Biomaterials 20 (1999) 573.Google Scholar
  2. 2.
    A. S. G. Curtis and C. Wilkinson, Trends Biotechnol. 19 (2001) 97.Google Scholar
  3. 3.
    B. Wójciak-Stothard, A. S. G. Curtis, W. Monaghan, K. Macdonald and C. Wilkinson, Exp. Cell. Res. 223 (1996) 426.Google Scholar
  4. 4.
    A. M. Rajnicek and C. D. Mccaig, J. Cell. Sci. 110 (1997) 2905.Google Scholar
  5. 5.
    A. M. Rajnicek and C. D. Mccaig, ibid. 110 (1997) 2915.Google Scholar
  6. 6.
    A. S. G. Curtis, B. Casey, J. O. Gallagher, D. Pasqui, M. A. Wood and C. Wilkinson, Biophys. Chem. 94 (2001) 275.Google Scholar
  7. 7.
    M. J. Dalby, S. J. Yarwood, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Exp. Cell. Res. 276 (2002) 1.Google Scholar
  8. 8.
    M. J. Dalby, S. Childs, M. O. Riehle, H. J. H. Johnstone, S. Affrossman and A. S. G. Curtis, Biomaterials 24 (2003) 927.Google Scholar
  9. 9.
    R. Barbucci, D. Pasqui, A. Wirsen, S. Affrossman and A. S. G. Curtis, J. Mater. Sci. Mater. Med. 14 (2003) 721.Google Scholar
  10. 10.
    M. J. Garvey, R. L. Williams, P. J. Doherty, J. Fink and B. G. Cousins, International Patent Application No. P 405296 WO (2002).Google Scholar
  11. 11.
    R. K. Iler, in “The Chemistry of Silica” (John Wiley & Sons, New York, 1979).Google Scholar
  12. 12.
    T. Coradin and P. J. Lopez, Chem. Bio. Chem. 3 (2003) 1.Google Scholar
  13. 13.
    S. Huang and D. E. Ingber, Nat. Cell. Biol. 1 (1999) E131.Google Scholar
  14. 14.
    J. D. Andrade, in “Surface and Interfacial Aspects of Biomedical Polymers” (Plenum Press, New York, 1985).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • B. G. Cousins
    • 1
  • P. J. Doherty
    • 1
  • R. L. Williams
    • 1
  • J. Fink
    • 2
  • M. J. Garvey
    • 2
  1. 1.Department of Clinical EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Department of PhysicsUniversity of Liverpool, Oliver Lodge LaboratoryLiverpoolUK

Personalised recommendations