REVIEW Bioactive metals: preparation and properties

Article

Abstract

Some ceramics, such as Bioglass®, sintered hydroxyapatite, and glass-ceramic A-W, spontaneously form a bone-like apatite layer on their surface in the living body, and bond to bone through the apatite layer. These materials are called bioactive ceramics, and are clinically important for use as bone-repairing materials. However, they cannot be used at high-load sites, such as is found in femoral and tibial bones, because their fracture toughness values are not as high as that of human cortical bone. Titanium metal and its alloys have high fracture toughness, and form a sodium titanate layer on its surface when soaked in a 5 M-NaOH solution at 60 °C for 24 h, followed by a heat treatment at 600 °C for 1 h. On moving toward the metal interior, the sodium titanate layer gradually changes into the pure metal within a distance of 1 μm from the surface. The mechanical strength of the titanium metal or a titanium alloy is not adversely affected by these chemical and thermal treatments. The titanium metal and its alloys resulting from the above treatment can release Na+ ions from its surface into a surrounding body fluid via an ion exchange reaction with H3O+ ions, resulting in many Ti–OH groups forming on its surface. These Ti–OH groups initially combine with Ca2+ ions to form amorphous calcium titanate in the body environment, and later the calcium titanate combines with phosphate ions to form amorphous calcium phosphate. The amorphous calcium phosphate eventually transforms into bone-like apatite, and by this process the titanium metals are soon tightly bonded to the surrounding living bone through the bone-like apatite layer. The treated metals have already been subjected to clinical trials for applications in artificial total hip joints. Metallic tantalum has also been found to bond to living bone after it has been subjected to the NaOH and heat treatment to form a sodium tantalate layer on its surface.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. L. Hench and Ö. H. Andersson, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 41.Google Scholar
  2. 2.
    R. Z. Legeros and J. P. Legeros, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 139.Google Scholar
  3. 3.
    T. Kokubo, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 75.Google Scholar
  4. 4.
    J. Wilson, A. Yli-Urpo and H. Risto-Pekka, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 63.Google Scholar
  5. 5.
    E. C. Shores and R. E. Holmes, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 181.Google Scholar
  6. 6.
    T. Yamamuro, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 89.Google Scholar
  7. 7.
    W. R. Lacefield, in “An Introduction to Bioceramics” (World Scientific, Singapore, 1993) p. 223.Google Scholar
  8. 8.
    N. Neo, S. Kotani, T. Nakamura, T. Yamamuro, C. Ohtsuki, T. Kokubo and Y. Bando, J. Biomed. Mater. Res. 26 (1992) 1419.Google Scholar
  9. 9.
    T. Kokubo, S. Ito, Z. T. Huang, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, ibid. 24 (1990) 331.Google Scholar
  10. 10.
    M. Neo, T. Nakamura, C. Ohtsuki, T. Kokubo and T. Yamamuro, ibid. 27 (1993) 999.Google Scholar
  11. 11.
    T. Kokubo, T. Hayashi, S. Sakka, T. Kitsugi and T. Yamamuro, J. Ceram. Soc. Japan (Yogyo-Kyokai-Shi) 95 (1987) 785.Google Scholar
  12. 12.
    T. Kokubo, Biomaterials 12 (1991) 155.Google Scholar
  13. 13.
    W. Neuman and M. Neuman, in “The Chemical Dynamics of Bone Mineral” (University of Chicago Press, IL, 1958) p. 1.Google Scholar
  14. 14.
    J. Gamble, in “Chemical Anatomy, Physiological and Pathology of Extracellular Fluid” (Harvard University Press, MA, 1967) p. 1.Google Scholar
  15. 15.
    C. Ohtsuki, T. Kokubo and T. Yamamuro, J. Non-Cryst. Solids 143 (1992) 84.Google Scholar
  16. 16.
    P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura and T. Yamamuro, J. Am. Ceram. Soc. 75 (1992) 2094.Google Scholar
  17. 17.
    P. Li, C. Ohtsuki, T. Kokubo, K. Nakanishi, N. Soga, T. Nakamura, T. Yamamuro and K. De Groot, J. Biomed. Mater. Res. 28 (1994) 7.Google Scholar
  18. 18.
    M. Uchida, H.-M. Kim, T. Kokubo and T. Nakamura, J. Am. Ceram. Soc. 84 (2001) 2041.Google Scholar
  19. 19.
    T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, J. Ceram. Soc. Japan 109 (2001) 929.Google Scholar
  20. 20.
    T. Miyazaki, H.-M. Kim, T. Kokubo, H. Kato and T. Nakamura, J. Sol-Gel Sci. Tech. 21 (2001) 83.Google Scholar
  21. 21.
    T. Kokubo, F. Miyaji, H.-M. Kim and T. Nakamura, J. Am. Ceram. Soc. 79 (1996) 1127.Google Scholar
  22. 22.
    H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 32 (1996) 409.Google Scholar
  23. 23.
    H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Ceram. Soc. Japan 105 (1997) 111.Google Scholar
  24. 24.
    H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Mater. Sci.: Mater. Med. 8 (1997) 341.Google Scholar
  25. 25.
    H.-M. Kim, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res. 45 (1999) 100.Google Scholar
  26. 26.
    H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo and T. Nakamura, Kor. J. Ceram. 4 (1998) 336.Google Scholar
  27. 27.
    H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 55 (2001) 185.Google Scholar
  28. 28.
    H.-M. Kim, Y. Sasaki, J. Suzuki, S. Fujibayashi, T. Kokubo, T. Matsushita and T. Nakamura, in “Bioceramics”, vol. 13 (Trans Tech Pub., Switzerland, 2000) p. 227.Google Scholar
  29. 29.
    H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 57 (2001) 441.Google Scholar
  30. 30.
    T. Himeno, M. Kawashita, H.-M. Kim, T. Kokubo and T. Nakamura, in “Bioceramics”, vol. 14 (Trans Tech Pub., Switzerland, 2001) p. 641.Google Scholar
  31. 31.
    H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, J. Mater. Sci.: Mater. Med. 11 (2000) 555.Google Scholar
  32. 32.
    H. Takadama, H.-M. Kim, T. Kokubo and T. Nakamura, Sci. Tech. Adv. Mater. 2 (2001) 389.Google Scholar
  33. 33.
    H.-M. Kim, H. Takadama, F. Miyaji, T. Kokubo, S. Nishiguchi and T. Nakamura, Biomaterials 21 (2000) 353.Google Scholar
  34. 34.
    H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 38 (1997) 121.Google Scholar
  35. 35.
    K. Nishio, M. Neo, H. Akiyama, S. Nishiguchi, H.-M. Kim, T. Kokubo and T. Nakamura, ibid. 52 (2000) 652.Google Scholar
  36. 36.
    W. Q. Yan, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji and T. Kokubo, ibid. 37 (1997) 265.Google Scholar
  37. 37.
    T. Nakamura, S. Nishiguchi, H.-M. Kim, F. Miyaji and T. Kokubo, in “Advances in Science and Technology, vol. 28: Materials in Clinical Applications” (Techna Srl, Faenza, 1999) p. 289.Google Scholar
  38. 38.
    S. Nishiguchi, T. Nakamura, M. Kobayashi, H.-M. Kim, F. Miyaji and T. Kokubo, Biomaterials 20 (1999) 491.Google Scholar
  39. 39.
    S. Nishiguchi, H. Kato, H. Fujita, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 54 (1999) 689.Google Scholar
  40. 40.
    S. Nishiguchi, H. Kato, H. Fujita, M. Oka, H.-M. Kim, T. Kokubo and T. Nakamura, Biomaterials 22 (2001) 2522.Google Scholar
  41. 41.
    T. Kokubo, H.-M. Kim, S. Nishiguchi and T. Nakamura, in “Bioceramics”, vol. 13 (Trans Tech Pub., Switzerland, 2000) p. 3.Google Scholar
  42. 42.
    S. Nishiguchi, S. Fujibayashi, H.-M. Kim, T. Kokubo and T. Nakamura, J. Biomed. Mater. Res. 62A (2003) 26.Google Scholar
  43. 43.
    H.-M. Kim, T. Kokubo, S. Fujibayashi, S. Nishiguchi and T. Nakamura, J. Biomed. Mater. Res. 52 (2000) 553.Google Scholar
  44. 44.
    S. Nishiguchi, H. Kato, M. Neo, M. Oka, H.-M. Kim, T. Kokubo and T. Nakamura, ibid. 54 (2001) 198.Google Scholar
  45. 45.
    T. Miyazaki, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, ibid. 50 (2000) 35.Google Scholar
  46. 46.
    T. Miyazaki, H.-M. Kim, F. Miyaji, T. Kokubo and T. Nakamura, J. Mater. Sci.: Mater. Med. 12 (2001) 683.Google Scholar
  47. 47.
    T. Miyazaki, H.-M. Kim, T. Kokubo, C. Ohtsuki, H. Kato and T. Nakamura, Biomaterials 23 (2002) 827.Google Scholar
  48. 48.
    H. Kato, T. Nakamura, S. Nishiguchi, Y. Matsusue, M. Kobayashi, T. Miyazaki, H.-M. Kim and T. Kokubo, J. Biomed. Mater. Res. 53 (2000) 28.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Kokubo
    • 1
  • H.-M. Kim
    • 2
  • M. Kawashita
    • 3
  • T. Nakamura
    • 4
  1. 1.Research Institute of Science and TechnologyChubu Universityshi, AichiJapan
  2. 2.Department of Ceramic Enginering, School of Advanced Materials EngineeringYonsei UniversitySeoulKorea
  3. 3.Department of Material Chemistry, Graduate School of EngineeringKyoto UniversityYoshida, Sakyo-ku, KyotoJapan
  4. 4.Department of Orthopaedic Surgery, Graduate School of MedicineKyoto UniversityKawahara, Sakyo-ku, KyotoJapan

Personalised recommendations