Journal of Materials Science: Materials in Medicine

, Volume 14, Issue 12, pp 1099–1103 | Cite as

Titanium transport through the blood stream. An experimental study on rats

  • Daniel G. Olmedo
  • Débora Tasat
  • María B. Guglielmotti
  • Rómulo L. Cabrini


Different metals are increasingly being used to manufacture implants, especially in the fields of dentistry and orthopedics. No metal or alloy is completely inert in vivo. The metal and the organic fluids interact releasing, for example, metallic products. Several hypotheses regarding the probable dissemination routes of titanium have been postulated, but its valence, the organic nature of its ligands and its potential toxicity have yet to be established. In a previous experimental study we demonstrated that i.p. injected titanium and zirconium oxides disseminate and deposit in organs such as liver and lung. The aim of this work was to study the eventual participation of blood cells in the transport mechanism of titanium employing the intraperitoneal injection of titanium oxide in rats as the experimental model. Twenty male Wistar rats, x: 100 g body weight, were intraperitoneally injected with 16×103 mg/kg b.w. of TiO2 in saline solution. Blood samples were taken by heart puncture at 3 and 6 months; blood smears were performed and stained with safranin evidencing monocytes containing titanium particles. The results obtained in this study would indicate that one of the ways in which titanium is disseminated is through the blood stream, via blood cells.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    T. Albrektsson, in “Tissue-Integrated Prostheses: Osseointegration in Clinical Dentistry” (Quintessence, 1985) p. 129.Google Scholar
  2. 2.
    P.-I. Bränemark, J. Dent. Educ. 52 (1988) 821.Google Scholar
  3. 3.
    B. D. Ratner, in “Biomaterials Science: An Introduction to Materials in Medicine” (Academic Press, 1996) p. 1.Google Scholar
  4. 4.
    P.-I. Bränemark, V. Breine, J. Lindström, R. Adell, B. O. Hansson and P. Ohlsson, Scand. J. Plast. Reconstr. Surg. 3 (1969) 81.Google Scholar
  5. 5.
    T. Albrektsson, P.-I. Bränemark, H.-A. Hansson and J. Lindström, Acta Orthop. Scand. 52 (1981) 155.Google Scholar
  6. 6.
    J. Asoka, N. Kuwayama, O. Okuno and I. Miura, J. Biomed. Mater. Res. 19 (1985) 699.Google Scholar
  7. 7.
    T. Rae, Biomaterials 7 (1986) 30.Google Scholar
  8. 8.
    D. Deporte, P. Watson, R. Pilliar, T. Howley and J. Winslow, J. Dent. Res. 67 (1988) 1190.Google Scholar
  9. 9.
    C. Johansson, Thesis, University of Göteborg, Sweden, 1991.Google Scholar
  10. 10.
    P.-I. Bränemark, B. O. Hansson, R. Adell, U. Breine, J. Lindström, O. Hallén and A. Öhman, Scand. J. Plast. Reconstr. Surg. Suppl. 16 (1977) 131.Google Scholar
  11. 11.
    R. Adell, V. Lekholm, B. Rockler and P.-I. Bränemark, Int. J. Oral Surg. 10 (1981) 387.Google Scholar
  12. 12.
    T. Albrektsson, J. Prosthet. Dent. 60 (1988) 75.Google Scholar
  13. 13.
    V. Lekholm, D. Van Steenbergh, I. Herrmann, C. Bolender, T. Folmer, J. Gunne, P. Henry, K. Higuchi, W. R. Laney and U. Lindeén, Int. J. Oral Maxillofac. Implants 9 (1994) 627.Google Scholar
  14. 14.
    T. O. Hoar and D. C. Mears, Proc. R. Soc. Med. 249 (1966) 486.Google Scholar
  15. 15.
    R. F. Coleman, J. Herrington and J. T. Scales, Br. Med. J. 1 (1973) 527.Google Scholar
  16. 16.
    D. C. Mears, Int. Metals Rev. 22 (1977) 119.Google Scholar
  17. 17.
    A. Wisbey, P. J. Gregson, L. M. Peter and M. Tuke, Biomaterials 12 (1991) 470.Google Scholar
  18. 18.
    S. G. Steinemann, in “Compatibility of Biomedical Implants. Corrosion and Organic and Biological Electrochemistry Divisions”, edited by P. Kovacs, N. S. Istephanous (Pennington, NJ, 1994) p. 94.Google Scholar
  19. 19.
    J. M. Anderson, in “Biomaterials Science. An Introduction to Materials in Medicine” (Academic Press, 1996) p. 415.Google Scholar
  20. 20.
    J. L. Gilbert, C. A. Buckley, J. J. Jacobs and E. P. Lautenschlager, in “Medical Applications of Titanium and Its Alloys; The Material and Biological Issues”, edited by S. A. Brown and J. E. Lemons (American Society for Testing and Materials Specials Technical Publication, West Conshohocken, Pennsylvania, 1996) p. 199.Google Scholar
  21. 21.
    A. P. Gwyniolo, J. Mater. Sci. Mater. Med. 5 (1994) 357.Google Scholar
  22. 22.
    M. Wong, J. Eulenberger, R. Schenk and E. Hunziker, J. Biomed. Mater. Res. 29 (1995) 1567.Google Scholar
  23. 23.
    M. Espósito, J. M. Hirsch, U. Lekholm and P. Thomsen, Eur. J. Oral Sci. 106 (1998) 721.Google Scholar
  24. 24.
    J. Black, A. Skipor, J. Jacobs, R. M. Urban and J. O. Galante, Trans. Orthop. Res. Soc. 14 (1989) 501.Google Scholar
  25. 25.
    J. L. Gilbert, C. A. Buckley and J. J. Jacobs, J. Biomed. Mater. Res. 27 (1993) 1533.Google Scholar
  26. 26.
    D. F. Williams, in “Biocompatibility of Clinical Implant Material” (CRC Press, Boca Ratón, Florida, 1981) p. 99.Google Scholar
  27. 27.
    B. Kasemo, J. Prosthet. Dent. 49 (1983) 832.Google Scholar
  28. 28.
    P. Bianco, P. Ducheyne and J. M. Cuckler, Biomaterials 17 (1996) 1937.Google Scholar
  29. 29.
    A. B. Ferguson, Jr, Y. Akahoshi, P. G. Laing and E. S. Hodge, J. Bone Joint Surg. Am. 44 (1962) 323.Google Scholar
  30. 30.
    J. L. Woodman, J. J. Jacobs, J. O. Galante and R. M. Urban, J. Orthop. Res. 4 (1984) 421.Google Scholar
  31. 31.
    J. Jacobs, M. D. Skipor, J. Black, R. M. Urban and J. O. Galante, J. Bone Joint Surg. Am. 73 (1991) 1475.Google Scholar
  32. 32.
    H. Schliephake, G. Reiss, R. Urban, F. W. Neukam and S. Guckel, Int. J. Oral Maxillofac. Implants 8 (1993) 502.Google Scholar
  33. 33.
    C. A. Engh, Jr, K. D. Moore, T. N. Vinh and G. A. Engh, J. Bone Joint Surg. Am. 79 (1997) 1721.Google Scholar
  34. 34.
    R. Urban, J. Jacobs, M. Tomlinson, J. Gavrilovic, J. Black and M. Peoch'h, ibid. 82 (2000) 457.Google Scholar
  35. 35.
    D. G. Olmedo, M. B. Guglielmotti, R. L. Cabrini, J. Mater. Sci. Mater. Med. 13 (2002) 793.Google Scholar
  36. 36.
    U. E. Pazzaglia, C. Minoia, L. Ceciliani and C. Riccardi, Acta Othop. Scand. 54 (1983) 574.Google Scholar
  37. 37.
    A. Koegel and J. Black, J. Biomed. Mater. Res. 18 (1984) 513.Google Scholar
  38. 38.
    J. L. Woodman, J. Black and S. A. Jimenez, ibid. 18 (1984) 99.Google Scholar
  39. 39.
    K. Merrit, S. A. Brown and N. A. Sharkey, ibid. 18 (1984) 1005.Google Scholar
  40. 40.
    K. Merrit, S. A. Brown, L. J. Farnsworth and T. D. Crown, in “Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications” (American Society for Testing Materials, 1987) p. 163.Google Scholar
  41. 41.
    A. C. Alfrey, in “Aluminum Health. A Critical Review”, edited by H. J. Gitelman (New York, 1989) p. 101.Google Scholar
  42. 42.
    G. Meachin and D. F. Williams, J. Biomed. Mater. Res. 7 (1973) 555.Google Scholar
  43. 43.
    R. T. Bothe, K. E. Beaton and H. A. Davenport, Surg. Gynecol. Obstet. 71 (1940) 598.Google Scholar
  44. 44.
    P. G. Laing, A. B. Ferguson Jr and E. S. Hodge, J. Biomed. Mater. Res. 1 (1967) 135.Google Scholar
  45. 45.
    S. A. Brown, K. Merrit, L. Farnsworth and T. Crowe, in “Quantitative Characterization and Performance of Porous Implants for Hard Tissue Applications” (American Society for Testing Materials, 1987) p. 163.Google Scholar
  46. 46.
    R. W. Legget, Health Phys. 57 (1989) 365.Google Scholar
  47. 47.
    D. C. Smith, S. Lugowsky, A. Mchugh, D. Deporte, P. Watson and M. Chipman, Int. J. Oral Maxillofac. Implants 12 (1997) 828.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • Daniel G. Olmedo
    • 1
  • Débora Tasat
    • 2
  • María B. Guglielmotti
    • 1
  • Rómulo L. Cabrini
    • 1
  1. 1.Department of Oral PathologySchool of Dentistry, University of Buenos AiresArgentina
  2. 2.Department of Radiobiology, National Atomic Energy CommissionSchool of Science and Technology, University of General San Martin, andBuenos AiresArgentina

Personalised recommendations