Advertisement

Journal of Materials Science: Materials in Medicine

, Volume 14, Issue 12, pp 1089–1097 | Cite as

Effect of micro- and macroporosity of bone substitutes on their mechanical properties and cellular response

  • A. Bignon
  • J. Chouteau
  • J. Chevalier
  • G. Fantozzi
  • J.-P. Carret
  • P. Chavassieux
  • G. Boivin
  • M. Melin
  • D. Hartmann
Article

Abstract

The control of porosity morphology and physico-chemical characteristics of calcium phosphate bone substitutes is a key-point to guaranty healing success. In this work, micro- and macroporosity of materials processed with 70% Hydroxyapatite (HAP) and 30% β-tricalcium phosphate (β-TCP) were controlled by sintering temperature and porogen addition, respectively. Porosity was quantified by scanning electron microscopy (pore size) and mercury intrusion porosimetry (interconnection between pores). The content of macrointerconnections and their size were dependent on porogen content, shape, and size. Mechanical properties (compressive strength) were strongly dependent on macroporosity size and content, on the basis of exponential laws, whereas microporosity ratio was less influent. Relying on those results, three types of materials with contrasting porous morphologies were processed and assessed in vitro, in primary culture of human osteoblasts and fibroblasts. With both types of cells, an exponential cellular growth was effective. Cells colonized the surface of the materials, bridging macroporosity, before colonizing the depth of the materials. Cell migration across and into macroporosity occurred via the emission by the cells of long cytoplasmic extensions that hanged on microporosity. Both macroporosity and macrointerconnectivity size influenced the penetration of cells. An interconnection size of 15 μm appeared to be effective to support this invasion without bringing down mechanical strength.

Keywords

Porosity Mercury Compressive Strength Hydroxyapatite Calcium Phosphate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    R. Cavagna, G. Daculsi and J.-M. Bouler, J. Long-Term Effects Med. Implants 9 (1997) 403.Google Scholar
  2. 2.
    T. Koshimo, T. Murase, T. Takagi and T. Saito, Biomaterials 22 (2001) 1579.Google Scholar
  3. 3.
    P. Ducheyne, S. Radin and L. King, J. Biomed. Mater. Res. 27 (1993) 25.Google Scholar
  4. 4.
    G. Daculsi, R. Z. Legeros, E. Nery, K. Lynch and B. Kerebel, ibid. 23 (1989) 883.Google Scholar
  5. 5.
    J. X. Lu, B. Flautre, K. Anselme, P. Hardouin, A. Gallur, M. Descamps and B. Thierry, J. Mater. Sci., Mater. Med. 10 (1999) 111.Google Scholar
  6. 6.
    D.-M. Liu, Mater. Sci. Forum 250 (1997) 183.Google Scholar
  7. 7.
    M. Akao, N. Miura and H. Aoki, Yogyo-Kyokai-Shi 92 (1984) 672.Google Scholar
  8. 8.
    T. Hussain, A. Gholinia and C. Leach, Key Eng. Mater. 132 (1997) 544.Google Scholar
  9. 9.
    C. Benaqqa, J. Chevalier, M. SaÂadaoui and G. Fantozzi, ibid. 206 (2002) 1641.Google Scholar
  10. 10.
    H. Yuan, K. Kurashina, J. D. Bruijn, Y. Li, K. De Groot and X. Zhang, Biomaterials 20 (1999) 1799.Google Scholar
  11. 11.
    A. Bignon, J. Chevalier and G. Fantozzi, J. Biomed. Mater. Res. App. Biomat. 63 (2002) 619.Google Scholar
  12. 12.
    M. I. Mendelson, J. Am. Ceram. Soc. 52 (1969) 443.Google Scholar
  13. 13.
    T. Mosmann, Cell. Immunol. 65 (1983) 55.Google Scholar
  14. 14.
    J. Chouteau, Mémoire de DEA, Faculté de médecine, Lyon (2001) p. 72.Google Scholar
  15. 15.
    J. Chouteau, A. Bignon, P. Chavassieux et al., Rev. Chir. Orthop. Répar. Mot. (in French) 89 (2003) 44.Google Scholar
  16. 16.
    D. Bernache-Assollant, L'industrie céramique & verrière 925 (1997) 257.Google Scholar
  17. 17.
    D.-M. Liu, Ceram. Int. 23 (1997) 135.Google Scholar
  18. 18.
    J.-S. Sun, H.-C. Liu and W.H.-S. Chang et al., J. Biomed. Mater. Res. 39 (1998) 390.Google Scholar
  19. 19.
    N. Passuti, J. Delecrin, F. Gouin and D. Heymann, in “Substituts osseux” Encycl. Méd. Chir. 14-015-B-10 (Elsevier, Paris, 1999) p. 1.Google Scholar
  20. 20.
    O. Gautier, J. M. Bouler, E. Aguado, P. Pilet and G. Daculsi, Biomaterials 19 (1998) 133.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • A. Bignon
    • 1
  • J. Chouteau
    • 2
    • 3
  • J. Chevalier
    • 1
  • G. Fantozzi
    • 1
  • J.-P. Carret
    • 2
    • 3
  • P. Chavassieux
    • 4
  • G. Boivin
    • 4
  • M. Melin
    • 5
  • D. Hartmann
    • 5
  1. 1.Institut National des Sciences appliquées, Groupe d'Etude de Métallurgie Physique et de Physique des Matériaux, CNRS UnitéVilleurbanneFrance
  2. 2.Laboratoire MECAL, Faculté de médecine Lyon-Sud, Chemin du petit RevoyetOullinsFrance and the
  3. 3.Service de chirurgie orthopédique, Pav. T, Hôpital Edouard HerriotLyonFrance
  4. 4.INSERM Unité 403, Faculté de Médecine R. LaennecLyon Cedex 08France
  5. 5.Laboratoire des biomatériaux, EA 3090, Faculté de pharmacieLyonFrance

Personalised recommendations