Advertisement

Thermal stability of hafnium silicate dielectric films deposited by a dual source liquid injection MOCVD

  • Paul R. Chalker
  • Paul A. Marshall
  • Richard J. Potter
  • Timothy B. Joyce
  • Anthony C. Jones
  • Stephen Taylor
  • Timothy C. Q. Noakes
  • P. Bailey
Article

Abstract

The hafnium and silicon precursors, Hf(NMe2)4 and ButMe2SiOH, have been investigated for the MOCVD of high-κ hafnium silicate, (HfO2)1–x–(SiO2) x films for gate dielectric applications. Control of the silica concentration in the hafnium silicate can be achieved by varying the relative precursor ratios up to a saturation level of 35–40% SiO2. The thermal stability of the resulting hafnium silicate films in air has been investigated using medium energy ion scattering. Internal oxidation of the underlying silicon substrate is discernable when the films are annealed in dry air for 15 min over the temperature range 800–1000 °C.

Keywords

SiO2 Hafnium HfO2 Internal Oxidation Dielectric Film 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    P. A. Packan, Science 285 (1999) 2079.Google Scholar
  2. 2.
    G. D. Wilk, R. M. Wallace and J. M. Anthony, J. Appl. Phys. 89 (2001) 5243.Google Scholar
  3. 3.
    T. M. Klein, D. Niu, W. S. Epling, W. Li, D. M. Maher, C. C. Hobbs, R. I. Hedge, I. J. R. Baumvol and G. N. Parsons, Appl. Phys. Lett. 75 (1999) 4001.Google Scholar
  4. 4.
    P. K. Roy and I. C. Kizilyalli, ibid. 72 (1998) 2835.Google Scholar
  5. 5.
    S. A. Campbell, D. C. Gilmer, X. Wang, M. T. Hsich, H. S. Kim, W. L. Gladfelter and J. H. Yan, IEEE Trans. Elec. Devices 44 (1997) 104.Google Scholar
  6. 6.
    M. Copel, M. A. Gribelyuk and E. Gusev, Appl. Phys. Lett. 76 (2000) 436.Google Scholar
  7. 7.
    B. H. Lee, L. Kang, R. Nieh, W.-J. Qi and J. C. Lee, ibid. 76 (2000) 1926.Google Scholar
  8. 8.
    B. C. Hendrix, A. S. Borovik, C. Xu, J. F. Roeder, T. H. Baum, M. J. Bevan, M. R. Visokay, J. J. Chambers, A. L. P. Rotondaro, H. Bu and L. Colombo, ibid. 80 (2002) 2362.Google Scholar
  9. 9.
    R. G. Gordon, J. Becker, D. Hausmann and S. Suh, Chem. Mater. 13 (2001) 2463.Google Scholar
  10. 10.
    J. L. Roberts, P. A. Marshall, A. C. Jones, P. R. Chalker, J. F. Bickley, P. A. Williams, S. Taylor, L. M. Smith, G. W. Critchlow, M. Schumacher and J. Lindner, J. Mater. Chem. 14 (2004) 391.Google Scholar
  11. 11.
    P. Bailey, T. C. Q. Noakes and D. P. Woodruff, Sur. Sci. 426 (1999) 358.Google Scholar
  12. 12.
    E. P. Gusev, H. C. Lu, T. Gustafsson and E. Garfunkel, Phys. Rev. B 52 (1995) 1759.Google Scholar
  13. 13.
    M. Quevedo-Lopez, M. El-Bouanani, S. Addepalli, J. L. Duggan, B. E. Gnade, R. M. Wallacea, M. R. Visokay, M. Douglas and L. Colombo, Appl. Phys. Lett. 79 (2001) 4192.Google Scholar
  14. 14.
    J. Morais, L. Miotti, G. V. Soares, S. R. Teixeira, R. Pezzi, K. P. Bastos, I. J. R. Baumvola, A. L. P. Rotondaro, J. J. Chambers, M. R. Visokay and L. Colombo, ibid. 81 (2002) 2995.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Paul R. Chalker
    • 1
  • Paul A. Marshall
    • 1
  • Richard J. Potter
    • 1
  • Timothy B. Joyce
    • 1
  • Anthony C. Jones
    • 2
    • 3
  • Stephen Taylor
    • 4
  • Timothy C. Q. Noakes
    • 5
  • P. Bailey
    • 5
  1. 1.Department of Materials Science and EngineeringUniversity of LiverpoolLiverpoolUK
  2. 2.Department of Chemistry and Surface Science Research CenterUniversity of LiverpoolLiverpoolUK
  3. 3.Epichem Oxides and NitridesMerseysideUK
  4. 4.Department of Electrical Engineering and ElectronicsUniversity of LiverpoolLiverpoolUK
  5. 5.CCLRC Daresbury LaboratoryCheshireUK

Personalised recommendations