Optical investigation of thin films of liquid–crystalline lutetium bisphthalocyanine

  • T. Basova
  • E. Kol’tsov
  • A. K. Hassan
  • A. Nabok
  • A. K. Ray
  • A. G. Gürek
  • V. Ahsen
Article

Abstract

Thin films of bis[4,5,4′,5′,4″,5″,4′″,5′″]-octakis(hexylthiophthalocyanine) of lutetium(III) were prepared by spin coating at different speeds in the range of 2000–6000 rpm. The films undergo phase transition on heat treatment at temperatures above 120 °C and the formation of a mesophase. The Q-bands in the visible absorption spectra of the films are broader and become red shifted compared to ones obtained for molecules in chloroform solution. Heat treatment produces molecular ordering, which is believed to be due to the edge-to-edge interaction between neighboring Pc moieties. Reduced film thickness and changes in optical constants are also attributed to thermally induced molecular reorganization corresponding to the liquid crystalline phase. AFM and polarized microscopy images are consistent with the phase transformations.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. M. Nicholson in "Phthalocyanines/Properties and Applications", Vol. 3, edited by C. C. Leznoff and A. B. P. Lever (VCH Publishers Inc., New York, 1993) p. 75.Google Scholar
  2. 2.
    J. Simon, J. J. Andre and M. Maitrot in "Molecules in Physics Chemistry and Biology", Vol. II, edited by J. Maruani (Kluwer Academic Publisher, Dordrecht, 1988) p. 599.Google Scholar
  3. 3.
    P. Bassoul, T. Toupance and J. Simon, Sensors and Actuators B 26–27 (1995) 150.Google Scholar
  4. 4.
    S. Besbes, V. Plichin, J. Simon and J. Vaxiviere, J. Electroanal. Chem. 237 (1987) 61.Google Scholar
  5. 5.
    M. L. Rodriguez-Mendez, J. Souto, J. A. De Saja and R. Aroca, J. Mater. Chem. 5 (1995) 639.Google Scholar
  6. 6.
    T. Komatsu, K. Ohta, T. Fujimoto and I. Yamamoto, ibid. 4 (1994) 533.Google Scholar
  7. 7.
    B. M. Hassan, H. Li and N. B. Mckeown, ibid. 10 (2000) 39.Google Scholar
  8. 8.
    S. M. Critchley, M. R. Willis, M. J. Cook, J. Mcmurdo and Y. Maruyama, ibid. 2 (1992) 157.Google Scholar
  9. 9.
    K. E. Treacher, G. J. Clarkson, Z. Ali-Adib and N. B. Mckeown, J. Chem. Soc. Chem. Commun. 1 (1996) 73.Google Scholar
  10. 10.
    Z. Ali-Adib, G. J. Clarkson, N. B. Mckeown, K. E. Treacher, H. F. Gleeson and A. S. Stennett, J. Mater. Chem. 8 (1998) 2371.Google Scholar
  11. 11.
    M. J. Cook, D. A. Mayes and R. H. Poynter ibid. 5 (1995) 2233.Google Scholar
  12. 12.
    T. Basova, A. G. Gurek and V. Ahsen, Mater. Sci. Eng. C. 22 (2002) 99.Google Scholar
  13. 13.
    T. V. Basova, B. A. Kolesov, A. G. Gürek and V. Ahsen, Thin Solid Films 385 (2001) 246.Google Scholar
  14. 14.
    Z. Belarbi, C. Sirlin, J. Simon and J. J. André, J. Phys. Chem. 93 (1989) 8105.Google Scholar
  15. 15.
    A. G. Gürek, V. Ahsen, D. Luneau and J. Pècaut, Inorg. Chem. 40 (2001) 4793.Google Scholar
  16. 16.
    T. Toupance, P. Bassoul, L. Mineau and J. Simon, J. Phys. Chem. 100 (1996) 11704.Google Scholar
  17. 17.
    H. Arwin, Sensors and Actuators A 92 (2001) 43.Google Scholar
  18. 18.
    A. V. Nabok, A. K. Hassan, A. K. Ray, O Omar and V. I. Kalchenko, Sensors and Actuators B 45 (1997) 115.Google Scholar
  19. 19.
    W. T. Ford, L. Summer, W. Zhu, Y. H. Change, P. Um, K. H. Choi, P. A. Heiney and N. C. Maliszewskyj, New J. Chem. 18 (1994) 495.Google Scholar
  20. 20.
    J. F. Van Der Pool, E. Neelmen, J. W. Zwikker, R. J. M. Nolte and W. Drenth, Liq. Cryst. 6 (1989) 577.Google Scholar
  21. 21.
    A. Lux, G. G. Rozenberg, K. Petritsch, S. C. Moratti, A. B. Holmes and R. H. Friend, Synth. Met. 102 (1999) 1527.Google Scholar
  22. 22.
    K. Ban, K. Nishizawa, K. Ohta and H. Shirai, J. Mater. Chem. 10 (2000) 1083.Google Scholar
  23. 23.
    A. M. Van De Craats, J. M. Warman, H. Hasebe, R. Naito and K. Ohta, J. Phys. Chem. B 101 (1997) 9224.Google Scholar
  24. 24.
    J. Sleven, C. Görller-Walrand and K. Binnemas Mater. Sci. Eng. C. 18 (2001) 229.Google Scholar
  25. 25.
    F. Maeda, K. Hatsusaka, K. Ohta and M. Kimura, J. Mater. Chem. 13 (2003) 243.Google Scholar
  26. 26.
    H. Eichhorn, D. Wöhrle and D. Pressner, Liq. Cryst. 5 (1997) 643.Google Scholar
  27. 27.
    M. Kasha, H. R. Rawls and A. El-Bayoumi, Pure Appl. Chem. 11 (1965) 371.Google Scholar
  28. 28.
    P. S. Vukusic, J. R. Sambles and J. D. Wright, J. Mater. Chem. 2 (1992) 1105.Google Scholar
  29. 29.
    I. Pockrand, Surface Sci. 72 (1978) 577.Google Scholar
  30. 30.
    Ph. R. Bevington, "Data Reduction and Error Analysis for Physical Sciencies" (McGraw-Hill, New York, 1969).Google Scholar
  31. 31.
    R. Rella, P. Siciliano, L. Valli, K. Spaeth and G. Gauglitz, Sensors and Actuators B 48 (1998) 328.Google Scholar
  32. 32.
    A. K. Hassan, A. K. Ray, A. V. Nabok and S. Panigrahi, IEE Proc. Sci. Measur. Tech. 147 (2000) 137.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Basova
    • 1
  • E. Kol’tsov
    • 1
  • A. K. Hassan
    • 2
  • A. Nabok
    • 2
  • A. K. Ray
    • 2
  • A. G. Gürek
    • 3
  • V. Ahsen
    • 3
    • 4
  1. 1.Institute of Inorganic ChemistryNovosibirskRussia
  2. 2.Nanotechnology Research Laboratory, School of EngineeringSheffield Hallam UniversitySheffieldUK
  3. 3.Department of ChemistryGebze Institute of TechnologyGebze-KocaeliTurkey
  4. 4.TUBITAK-Marmara Research CenterMaterials and Chemical Technologies Research InstituteKocaeliTurkey

Personalised recommendations