The influence of mechanochemical treatment of the Bi2O3–ZrO2 system on the structural and dielectric properties of the sintered ceramics

  • č. Jovalekić
  • B. Stojanović
  • M. Zdujić
  • M. Mitrić
Article

Abstract

A powder mixture of α-Bi2O3 and ZrO2, both monoclinic, in the molar ratio 2 : 3, was mechanochemically treated in a planetary ball mill in an air atmosphere for up to 20 h, using steel vial and hardened-steel balls as the milling medium. Mechanochemical reaction leads to the gradual formation of an amorphous phase. After 5 h of milling the starting α-Bi2O3 and ZrO2 were transformed fully into a non-crystalline phase. After milling for various times the powders were compacted by pressing and isothermal sintering. The pressed and sintered densities depended on the milling time. Depending on the duration of the mechanochemical treatment and sintering temperature, the phases: γ-Bi12(ZrxFe1−x)O20; Bi(ZrxFe1−x)O3 and Bi2(ZrxFe1−x)4O9 were obtained by reactive sintering, whereby the Fe originates from vial and ball debris. The dielectric permittivity of the sintered samples significantly depends on the milling time. Samples milled for 10 and 15 h and subsequently sintered at 800 °C for 24 h exhibit a hysteresis dependence of the dielectric shift (in altering electric fields higher than 10 kV/cm at room temperature), confirming that the synthesized materials possess ferroelectric properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    G. H. Haertling, J. Am. Ceram. Soc. 82 (1999) 797.Google Scholar
  2. 2.
    J. F. Scott, Phys. World February (1995) 46.Google Scholar
  3. 3.
    E. C. Subbarao, J. Phys. Chem. Solids 23 (1962) 665.Google Scholar
  4. 4.
    E. C. Subbarao, J. Am. Ceram. Soc. 45 (1962) 166.Google Scholar
  5. 5.
    G. A. Smolenskii, V. A. Yusupov and A. I. Agranovskya, Fiz. tverd. tela. 3 (1961) 901 (in Russian).Google Scholar
  6. 6.
    B. Aurivillius, Arkiv för Kemi. 1 (1949) 46.Google Scholar
  7. 7.
    V. M. Goldschmidt, Mat.-Natur. K 1 (1926).Google Scholar
  8. 8.
    R. D. Shannon, Acta Cryst. A 32 (1976) 751.Google Scholar
  9. 9.
    E. M. Levin and R. S. Roth, J. Res. Natl. Bur. Stand. A, Phys. and Chem. 68A (1968) 197.Google Scholar
  10. 10.
    G. V. Samsonov (ed), “Physico-chemical properties of oxides” (Naukova Dumka, Kiev, 1965) (in Russian).Google Scholar
  11. 11.
    M. Toyoda, Y. Hamaji, K. Tomoto and D. A. Payne, Jpn. J. Appl. Phys. 32 (1993) 4161.Google Scholar
  12. 12.
    Č. Jovalekić and M. Stević, Ferroelectrics 132 (1992) 196.Google Scholar
  13. 13.
    A. Kakimi, S. Okamura, Y. Yogi, K. Mori and T. Tsukamoto, Jap. J. Appl. Phys. 39 (1994) 5304.Google Scholar
  14. 14.
    C. Suryanarayana, Prog. Mater. Sci. 46 (2001) 1.Google Scholar
  15. 15.
    J. Xue, D. Wan and J. Wang, Mater. Lett. 39 (1999) 364.Google Scholar
  16. 16.
    L. B. Kong, W. Zhu and O. K. Tan, ibid. 42 (2000) 232.Google Scholar
  17. 17.
    L. B. Kong, J. Ma, W. Zhu and O. K. Tan, ibid. 52 (2002) 378.Google Scholar
  18. 18.
    L. B. Kong, J. Ma, W. Zhu and O. K. Tan, ibid. 51 (2001) 108.Google Scholar
  19. 19.
    R. G. Garvey, Powder Diff. 1 (1986) 114.Google Scholar
  20. 20.
    B. Aurivillius and G. Sillen, Nature 155 (1945) 306.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • č. Jovalekić
    • 1
  • B. Stojanović
    • 1
  • M. Zdujić
    • 2
  • M. Mitrić
    • 3
  1. 1.Center for Multidisciplinary StudiesUniversity of Belgrade
  2. 2.Institute of Technical Sciences of the Serbian Academy of Sciences and Arts
  3. 3.Laboratory of Solid State PhysicsInstitute for Nuclear Sciences “Vinča”BelgradeSerbia and Montenegro

Personalised recommendations