Journal of Materials Science

, Volume 39, Issue 24, pp 7245–7251 | Cite as

Modelling induction skull melting design modifications

  • V. Bojarevics
  • K. Pericleous

Abstract

Induction Skull Melting (ISM) is used for heating, melting, mixing and, possibly, evaporating reactive liquid metals at high temperatures when a minimum contact at solid walls is required. The numerical model presented here involves the complete time dependent process analysis based on the coupled electromagnetic, temperature and turbulent velocity fields during the melting and liquid shape changes. The simulation is validated against measurements of liquid metal height, temperature and heat losses in a commercial size ISM furnace. The often observed limiting temperature plateau for ever increasing electrical power input is explained by the turbulent convective heat losses. Various methods to increase the superheat within the liquid melt, the process energy efficiency and stability are proposed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    H. Tadano, K. Kainuma, T. Take, T. Shinokura and S. Hayashi, in Proceedings of the 3rd International Sym-posium on Electromagnetic Processing of Materials (ISIJ, Nagoya, Japan, 2000) p. 277.Google Scholar
  2. 2.
    M. Vogt, F. Bernier, A. Muehlbauer, M. Blum and G. Jarczyk, in Proceedings of the 3rd International Sym-posium on Electromagnetic Processing of Materials (ISIJ, Nagoya, Japan, 2000) p. 289.Google Scholar
  3. 3.
    P. Gillon, in Proceedings of the 3rd International Symposium on Electromagnetic Processing of Materials (ISIJ, Nagoya, Japan, 2000) p. 635.Google Scholar
  4. 4.
    R. A. Harding, M. Wickins, V. Bojarevics and K. Pericleous, in “Modeling of Casting, Welding and Advanced Solidification Processes, X,” edited by D. M. Stefanescu et al. (TMS, Warrendale, 2003) p. 741.Google Scholar
  5. 5.
    Y.-Q. Su, J.-J. Guo, G.-Z. Liu, J. Jia and H.-S. Ding, Mater. Sci. Techn. 17 (2001) 1434.Google Scholar
  6. 6.
    T. Tanaka, K. Kurita and A. Kuroda, Liquid Metal Flows ASME 1991, FED-Vol. 115, p. 49.Google Scholar
  7. 7.
    M. Enokizono, T. Todaka, I. Matsumoto and Y. Wada, IEEE Magn. 29(6) (1993) 2968.CrossRefGoogle Scholar
  8. 8.
    E. Baake, A. Muehlbauer, A. Jakowitsch and W. Andree, Metall. Mater. Trans. B 26B (1995) 529.Google Scholar
  9. 9.
    P.-R. Cha, Y.-S. Hwang, Y.-J. Oh, S. H. Chung and J.-K. Yoon, ISIJ Intern. 9 (1996) 1157.Google Scholar
  10. 10.
    F. Bernier, M. Vogt and A. Muehlbauer, in Pro-ceedings of the 3rd International Symposium on Electromagnetic Processing of Materials, ISIJ, Nagoya, Japan, 2000, p. 283.Google Scholar
  11. 11.
    M. Cross, C. Bailey, K. Pericleous, A. Williams, V. Bojarevics, N. Croft and G. Taylor, J. of Metals, JOM-e, 2002 January: http://www.tms.org/ pubs/journals/JOM/0201/Cross/Cross-0201.htmlGoogle Scholar
  12. 12.
    V. Bojarevics, K. Pericleous and M. Cross, Metall. Mater. Trans. B 31B (2000) 179.Google Scholar
  13. 13.
    D. C. Wilcox, Turbulence Modelling for CFD, 2nd ed. (DCW Industries, California, 1998).Google Scholar
  14. 14.
    A. Bojarevics, V. Bojarevics, J. Gelfgat and K. Pericleous, Magnetohydrodynamics 35(3) (1999) 258.Google Scholar
  15. 15.
    V. Bojarevics, G. Djambazov, R. A. Harding, K. Pericleous and M. Wickins, in Proceedings of the 5th Int. Conf. on Fundamental and Applied MHD ‘PAMIR’ (Ramatuelle, France, 2002) Vol. 2, p. 77.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • V. Bojarevics
    • 1
  • K. Pericleous
    • 1
  1. 1.University of GreenwichSchool of Computing and MathematicsLondonUK

Personalised recommendations