Journal of Materials Science

, Volume 39, Issue 23, pp 6921–6927

Titanium-doped γ-Fe2O3: Reduction and oxidation properties

  • I. Ayub
  • F. J. Berry
  • E. Crabb
  • Ö. Helgason


Titanium-doped γ-Fe2O3 has been prepared by the calcination of a solid formed by the addition of aqueous ammonia to an aqueous solution of titanium- and iron-containing salts and boiling the precipitate under reflux. As compared to pure γ-Fe2O3 made by similar methods, titanium-doped γ-Fe2O3 showed a higher surface area and a greater stability to reduction, thermal conversion to an α-Fe2O3-related structure and the maintenance of a higher surface area during oxidation-reduction cycling.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    E. Herrero, M. V. Cabanas, M. Vallet-Regi, J. L. Martinez and J. M. Gonzalez-Calbet, Solid State Ionics 101–103 (1997) 213.Google Scholar
  2. 2.
    G. Schimanke and M. Martin, ibid. 136–137 (2000) 1235.Google Scholar
  3. 3.
    E. Pellegrin, M. Hagelstein, S. Doyle, H. O. Moser, J. Fuchs, D. Vollath, S. Schuppler, M. A. James, S. S. Saxena, L. Niesen, O. Rogojann, G. A. Sawatzky, C. Ferrero, M. Borowsky, O. Tjernberg and N. B. Brookes, Phys. Stat Sol. 215 (1999) 797.Google Scholar
  4. 4.
    J. M. Fisher, T. J. Hyde and D. Thompsett, UK Patent PCT/GB98/00325 (1998).Google Scholar
  5. 5.
    F. J. Berry, C. Greaves, J. G. Mcmanus, M. Mortimer and G. Oates, J. Solid State Chem. 130 (1997) 272.Google Scholar
  6. 6.
    F. J. Berry, C. Greaves, Ö. Helgason and J. G. Mcmanus, J. Mater. Chem. 9 (1999) 223.CrossRefGoogle Scholar
  7. 7.
    Ö. Helgason, H. P. Gunnlaugsson, K. Jonsson and S. Steinthorsson, Hyperf. Inter. 91 (1994) 595.Google Scholar
  8. 8.
    Ö. Helgason, J.-M. Greneche, F. J. Berry, S. MØrup and F. Mosselmans, J. Phys. Cond. Matter 13(2001) 10785.Google Scholar
  9. 9.
    F. J. Berry, in "The Mössbauer Effect in Supported Microcrystallites," Advances in Inorganic Chemistry and Radiochemistry, Vol. 21, edited by H. J. Emeleus and A. G. Sharpe (Academic Press, New York, 1978), p. 255.Google Scholar
  10. 10.
    C. Wivel and S. MØrup, J. Phys. E 14 (1981) 605.Google Scholar
  11. 11.
    H. Tanaka and M. Kono, J. Geomag. Geoelectr. 39 (1987) 463.Google Scholar
  12. 12.
    N. Guigue-Millot, S. BÉgin-Colin, Y. Champion, M. J. Hÿtch, G. Le CaËr and P. Perriat, J. Solid State Chem. 170 (2003) 30.Google Scholar
  13. 13.
    E. Murad and J. M. Johnston, in "Iron Oxides and Oxyhydroxides," Mössbauer Spectroscopy Applied to Inorganic Chemistry, Vol. 2, edited by G. J. Long (Plenum Press, New York, 1987) p. 507.Google Scholar
  14. 14.
    JCPDS Index No. 06–0615.Google Scholar
  15. 15.
    G. M. Da Costa, E. De Grave, P. M. A. De Bakker and R. E. Vandenberghe, Clays Clay Mines. 43 (1995) 656.Google Scholar
  16. 16.
    F. J. Berry, Ö. Helgason, K. Jonsson and S. J. Skinner, in Proceedings of The International Conference on the Applications of the Mossbauer Effect, edited by I. Ortalli (SIF, Bologna, 1996) p. 59.Google Scholar
  17. 17.
    P. Perriat, E. Fries, N. Millot and B. Domenichini, Solid State Ionics 117 (1999) 175.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • I. Ayub
    • 1
  • F. J. Berry
    • 1
  • E. Crabb
    • 1
  • Ö. Helgason
    • 2
  1. 1.Department of ChemistryThe Open University, Walton HallMilton KeynesU.K
  2. 2.Science InstituteUniversity of IcelandReykjavikIceland

Personalised recommendations