Journal of Materials Science

, Volume 39, Issue 22, pp 6791–6805

Scanning electron acoustic microscopy (SEAM): A technique for the detection of contact-induced surface & sub-surface cracks

  • T. F. Page
  • B. A. Shaw


A variant of the scanning acoustic microscopy technique, scanning electron acoustic microscopy (SEAM), uses a pulsed electron beam in a conventional scanning electron microscope (SEM) to generate elastic waves near the surface of the sample. Conveniently for studies of surface damage, the contrast-generating processes are at a depth commensurate with the thickness of many thin hard ceramic coatings and the typical depths of fatigue-induced cracks in both gears and rolling element bearing systems.

Using examples from our studies of contact damage induced in thin hard coated systems and gears, this paper will demonstrate the applicability of SEAM techniques to the study of near-surface damage in coated systems (coating fracture and debonding) and gears (fatigue damage). We show that clear contrast can arise from cracks oriented both parallel to and, sometimes, perpendicular to the surfaces of many samples, and show that useful information can be provided regarding the debonding of coatings. It has also been found possible to delineate sub-surface contact and contact fatigue cracks allowing some information regarding crack orientation and extent to be deduced without the need for either serial or vertical sectioning of the sample.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    R. GILMORE, in"Concise Encyclopedia of Materials Characterisation," edited by R. W. Cahn and E. Lifshin (Pergamon, Oxford, 1993) p. 4.Google Scholar
  2. 2.
    D. E. W. STONE and B. CLARKE, in"Concise Encyclopedia of Materials Characterisation," edited by R. W. Cahn and E. Lifshin (Pergamon, Oxford, 1993) p. 58.Google Scholar
  3. 3.
    G. A. D. BRIGGS,"Acoustic Microscopy" (Oxford University Press, Oxford, 1992).Google Scholar
  4. 4.
    D. E. NEWBURY, D. C. JOY, P. ECHLIN, C. E. FIORI and J. I. GOLDSTEIN,in "Advanced Scanning Electron Microscopy and Microanalysis" (Plenum, New York, 1986) p. 45.Google Scholar
  5. 5.
    T. F. PAGE, Inst. Phy. Conf. Ser. (UK) 138 (1993) 295.Google Scholar
  6. 6.
    F. I. HUMPHRIES, J. Microscopy 195 (1999) 170.Google Scholar
  7. 7.
    B. A. SHAW, J. T. EVANS and T. F. PAGE, J. Mats. Sci. iLetts. 13 (1994) 1551.Google Scholar
  8. 8.
    T. F. PAGE, "Festschrift for Sir Robert Honeycombe," edited by J. A. Charles and G. C. Smith (The Institute of Materials, London, 1992) p. 337.Google Scholar
  9. 9.
    D. G. DAVIES, Phil. Trans. Roy. Soc. Lond. iA 320 (1986) 243.Google Scholar
  10. 10.
    L. J. BALK, Adv. Electron Electron. Phys. 71 (1988) 1.Google Scholar
  11. 11.
    E. BRANDIS and A. ROSENCWAIG, Appl. Phys. Lett. i 37 (1980) 98.Google Scholar
  12. 12.
    G. S. CARGILL, Nature, Lonid. 286 (1980) 690.Google Scholar
  13. 13.
    A. ROSENCWAIG, in"Scanned Image Microscopy," edited by A. E. Ash (Academic Press, London, 1980) p. 291.Google Scholar
  14. 14.
    Idem., Scann. Electron. Microsc. IV (SEM, Inc. Chicago) (1984) 1611.Google Scholar
  15. 15.
    L. J. BALK, M. DOMNIK and M. SCHOTTLER, Inst. Phys. iConf. Ser. (UK) 93 (1988) 219.Google Scholar
  16. 16.
    G. S. CARGILL, in"Scanned Image Microscopy," edited by E. A. Ash (Academic Press, London, 1980) p. 319.Google Scholar
  17. 17.
    A. ROSENCWAIG, Science i 218 (1982) 223.Google Scholar
  18. 18.
    A. ROSENCWAIG and R. M. WHITE, Appl. Phys. Letts. i 38 (1981) 165.Google Scholar
  19. 19.
    M. K. THOMAS, R. C. FARROW and D. C. JOY, Bell Labs Report TM 82-11526-9 (1982).Google Scholar
  20. 20.
    D. C. JOY, Inst. Phys. Conf. Series 93(1988) 23.Google Scholar
  21. 21.
    L. J. BALK, D. G. DAVIES and N. KULTSCHER, Phys. iStatus Solidi A 82 (1984) 23.Google Scholar
  22. 22.
    E. D. BOYES, Inst. Phys. Conf. Seri. 98 (1989) 439.Google Scholar
  23. 23.
    D. C. JOY,"Monte Carlo Modelling for Electron Microscopy and Microanalysis" (Oxford University Press, Oxford, 1995).Google Scholar
  24. 24.
    T. F. PAGE and P. M. RAMSEY, unpublished work.Google Scholar
  25. 25.
    J. C. KNIGHT, T. F. PAGE and H. W. CHANDLER, Surf. iCoat. Tech. 49 (1991) 519.Google Scholar
  26. 26.
    P. M. RAMSEY and T. F. PAGE, unpublished work.Google Scholar
  27. 27.
    J. C. KNIGHT, T. F. PAGE, H. W. CHANDLER and P. M. RAMSEY in "Designing Ceramic Interfaces II," edited by S. D. Peteves (Official Publication of the EC, Physical Sciences EUR 15306, 1993) p. 253.Google Scholar
  28. 28.
    J. C. KNIGHT and T. F. PAGE, Surf. Coat. Tech. 53 (1992) 121.Google Scholar
  29. 29.
    S. V. HAINSWORTH, M. R. MCGURK and T. F. PAGE,ibid. 102 (1998) 97.Google Scholar
  30. 30.
    P. C. TWIGG and T. F. PAGE, ibid. 68/69 (1994) 453.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. F. Page
    • 1
  • B. A. Shaw
    • 2
  1. 1.School of Chemical Engineering and Advanced MaterialsUniversity of Newcastle upon TyneNewcastle upon TyneUK
  2. 2.Design Unit, School of Mechanical and Systems EngineeringUniversity of Newcastle upon TyneNewcastle upon TyneUK

Personalised recommendations