Advertisement

Journal of Materials Science

, Volume 39, Issue 20, pp 6311–6323 | Cite as

Preparation of tricalcium phosphate/alumina composite nanoparticles and self-reinforcing composites by simultaneous precipitation

  • Y. X. Pang
  • X. Bao
  • L. Weng
Article

Abstract

The composite nanoparticles and corresponding self-reinforcing composites comprising tricalcium phosphate (TCP) and alumina (Al2O3) were synthesized by simultaneous precipitation from the CaCl2, AlCl3 and (NH4)2HPO4 aqueous solutions, using aqueous NH4OH as precipitant. Influences of the precipitating media pH and the Ca/P atomic ratios on phase composition and morphology of the composites were investigated. Results showed that except for the major phases β-TCP and α-Al2O3, there was always a third minor phase in the calcined composites coprecipitated either in neutral or alkaline condition. Formation of β-TCP is, however, favored at pH 9.2, whereas more of the third phase, mainly AlPO4, is formed under neutral condition. High Ca/P ratios suppress the formation of α-Al2O3 phase under alkaline precipitating condition, but the effect is less significant in neutral condition. TEM observation showed that the ‘as prepared’ composite particles are nano-sized but interconnected to form a network-like morphology. They were changed to a core-shell-like structure after calcination, while their nano-scale dimension was retained. FEGSEM analysis revealed that the α-Al2O3 phase in the sintered composite compacts was in the form of fibrils dispersed in the phosphate phases. These in situ formed fibrils impart a unique role in self-reinforcement of the sintered composites. Mechanical measurements showed that the incorporation of alumina reinforced β-TCP effectively: the flexural strength increased from 15 MPa of the pure β-TCP to 84 MPa of the composite with 40 wt% of α-Al2O3.

Keywords

Fibril Flexural Strength AlCl3 Neutral Condition Composite Nanoparticles 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    I. Manjubala and M. Sivakumar, Mater. Chem. Phys. 71(2001) 272.CrossRefGoogle Scholar
  2. 2.
    K. Thoma, R. Alex and E. Fenschkleemann, Euro. J. Pharm. Biopharm . 38(1992) 101.Google Scholar
  3. 3.
    A. Akashi, Y. Matsuya, M. Unemori and A. Akamine, Biomaterials 22(2001) 2713.CrossRefGoogle Scholar
  4. 4.
    A. Cuneyt Tas, F. Korkusuz, M. Timucin and N. Akkas, J. Mater. Sci., Mater. Med. 8(1997) 91.Google Scholar
  5. 5.
    F. Korkusuz, A. Uchida, Y. Shito, N. Araki, K. Inoue and K. Ono, J. Bone Joint Surg. 75-B(1993) 111.Google Scholar
  6. 6.
    A. Ito, K. Ojima, H. Naito, N. Ichinose and T. Tateishi, J. Biomed. Mater. Res. 50(2000) 178.CrossRefGoogle Scholar
  7. 7.
    J. M. Bouler, R. Z. Legeros and G. Daculsi, ibid. 50/51(2000) 680.CrossRefGoogle Scholar
  8. 8.
    A. Slosarczyk and J. Piekarczyk, Ceram. Intern. 25(1999) 561.CrossRefGoogle Scholar
  9. 9.
    X. H. Yang and Z. H. Wang, J. Mater. Chem. 8(1998) 2233.CrossRefGoogle Scholar
  10. 10.
    E. Adolfsson, P. Alberius-Henning and L. Hermansson, J. Amer. Ceram. Soc. 83(2000) 2798.Google Scholar
  11. 11.
    H. Y. Juang and M. H. Hon, Mater. Sci. Eng. C2(1994) 77.Google Scholar
  12. 12.
    E. Adolfsson, M. Nygren and L. Hermansson, J. Amer. Ceram. Soc. 82(1999) 2909.Google Scholar
  13. 13.
    K. S. Oh, F. Caroff, R. Famery, M. F. Sigotluizard and P. Boch, J. Euro. Ceram. Soc. 18(1998) 1931.CrossRefGoogle Scholar
  14. 14.
    T. Kasuga, M. Sawada, M. Nogami and Y. Abe, Biomaterials 20(1999) 1415.CrossRefGoogle Scholar
  15. 15.
    K. Yamashita, E. Yonehara, X. F. Ding, M. Nagai, T. Umegaki and M. Matsuda, J. Biomed. Mater. Res. 43(1998) 46.CrossRefGoogle Scholar
  16. 16.
    Y.-K. Jun, W. H. Kim, O.-K. Kweon and S.-H. Hong , Biomaterials 24(2003) 3731.CrossRefGoogle Scholar
  17. 17.
    S. F. Hulbert, J. S. Morrison and J. J. Klawitter, J. Biomed. Mater. Res. 6(1972) 347.Google Scholar
  18. 18.
    K. T. Hwang, H. S. Lee, S. H. Lee, K. C. Chung, S. S. Park and J. H. Lee, J. Euro. Ceram. Soc. 21(2001) 375.CrossRefGoogle Scholar
  19. 19.
    H. X. Ji and P. M. Marquis, J. Mater. Sci. 28(1993) 1941.Google Scholar
  20. 20.
    2000 JCPDS-International Centre for Diffraction Data,PCPDFWIN v. 2.1 file No. 48-1192.Google Scholar
  21. 21.
    2000 JCPDS-International Centre for Diffraction Data,PCPDFWIN v. 2.1 file No. 72-1161.Google Scholar
  22. 22.
    2000 JCPDS-International Centre for Diffraction Data,PCPDFWIN v. 2.1 file No. 82-0902.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Y. X. Pang
    • 1
  • X. Bao
    • 1
  • L. Weng
    • 1
  1. 1.Institute of Polymer Technology and Materials EngineeringLoughborough UniversityLoughboroughUK

Personalised recommendations