Advertisement

Journal of Materials Science

, Volume 39, Issue 20, pp 6291–6297 | Cite as

Effects of thermal annealing of thin Au film on Fe40Ni38Mo4B18 in ultrahigh vacuum (UHV)

  • S. K. Sharma
  • V. Zaporojtchenko
  • J. Zekonyte
  • A. Buettner
  • S. Deki
  • F. Faupel
Article

Abstract

Thin films (∼20 nm) of Au were vapour-deposited on melt-spun amorphous ribbon specimens of the alloy Fe40Ni38Mo4B18 at room temperature. The specimens were subsequently annealed in UHV (∼10−8 mbar) at 723 and 823 K in order to observe any dispersion of Au as nanoparticles in the alloy matrix. The motivation for these investigations was derived from similar experiments carried out earlier in nitrogen and in low vacuum conditions, wherein a model based on segregation and oxidation of matrix elements was proposed in order to explain the observed dispersion of Au in the alloy matrix. The present investigations in UHV were carried out as a critical test of this model. However, XPS investigations carried out on these specimens in UHV did not show any dispersion of Au particles after annealing at these temperatures. Further examination of annealed specimen surfaces by SEM and AFM revealed the formation of Au-rich islands on the surface. Native oxide film underneath the Au film and crystallization of the alloy during thermal annealing do not seem to have any effect on depth profiles of Au. These results, when compared with those obtained after annealing the specimens in nitrogen and in low vacuum conditions (∼10−1–10−3 mbar), are suggestive of the crucial role of the annealing atmosphere during thermal annealing.

Keywords

Oxide Film Depth Profile Thermal Annealing Alloy Matrix Native Oxide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. M. Poate, K. N. Tu and J. W. Mayer, "Thin Films: Interdiffusion and Reactions" (Wiley, NY, 1978).Google Scholar
  2. 2.
    T. Noguch, K. Gotoh, Y. Yamaguch and S. Deki, J. Mater. Sci. Lett. 10(1991) 648.Google Scholar
  3. 3.
    K. Akamatsu and S. Deki, J. Coll. Interf. Sci. 214(1999) 353.CrossRefGoogle Scholar
  4. 4.
    S. Deki, K. Sayo, T. Fujita, A. Yamada and S. Hayashi, J. Mater. Chem. 9(1999) 943. 6296CrossRefGoogle Scholar
  5. 5.
    T. Yano, "Solid Phase Dispersion Through Thermal Relaxation Process," Master Thesis, Division of Industrial Chemistry, Graduate School of Engineering, Kobe University Japan, Thesis No. 920T219T, 1999.Google Scholar
  6. 6.
    S. Deki, "Division of Industrial Chemistry," Graduate School of Engineering, Kobe University, Japan 2001 (private communication).Google Scholar
  7. 7.
    S. K. Sharma, V. Zaporojtchenko, J. Zekonyte, S. Deki and F. Faupel, Mater. Sci. Engng. A 351(1/2) (2003) 316.CrossRefGoogle Scholar
  8. 8.
    Y. Watanabe, Y. Nakamura, S. Hirayama and N. Taniguchi , J. Vac. Sci. Technol. B 13(1995) 1207.CrossRefGoogle Scholar
  9. 9.
    J. F. Moulder, W. F. Stickle, P. E. Sobol and K. D. Bomben, "Handbook of X-ray Photoelectron Spectroscopy" (Perkin Elmer Corporation, Physical Electronics Division, Minnesota, USA, 1992).Google Scholar
  10. 10.
    E. A. Brandes and G. B. Brook (<nt>eds.</nt>), "Smithells Metals Reference Book" (Butterworth Heinmann, Oxford, 1998).Google Scholar
  11. 11.
    F. R. De Boer, R. Boom, W. C. M. Mattens, A. R. Miedema and A. K. Niessen, "Cohesion in Metals, Transition Metal Alloys" (North Holland, Amsterdam, 1988).Google Scholar
  12. 12.
    Y. Zhang, U. Czubayko, N. Wanderka, F. Zhu, and H. Wollenberger, J. Mater. Res. 15(2000) 1271.Google Scholar
  13. 13.
    D. Akhtar, B. Cantor and R. W. Cahn, Acta Metall. 30(1982) 1571.CrossRefGoogle Scholar
  14. 14.
    S. K. Sharma, S. Banerjee, Kuldeep and A. K. Jain, ibid. 36(1988) 1683.CrossRefGoogle Scholar
  15. 15.
    S. Lenser, V. Zoellmer, J. Erichsen, S. Daniel, K. Raetzke, S. Deki and F. Faupel, Scripta Materialia. 48(2003) 275.CrossRefGoogle Scholar
  16. 16.
    D. Qiao, L. S. Yu, S. S. Lau, L. Y. Lin, H. S. Jiang and T. E. Haynes, J. Appl. Phys. 88(2000) 4196.CrossRefGoogle Scholar
  17. 17.
    L. Chen, F. R. Chen, J. J. Kai, L. Chang, J. K. Ho, C. S. Jong, C. C. Chiu, C. N. Huang, C. Y. Chen and K. K. Shih, ibid. 86(1999) 3826.CrossRefGoogle Scholar
  18. 18.
    J. K. Sheu, Y. K. Su, G. C. Chi, W. C. Chen, C. Y. Chen, C. N. Huang, J. M. Hong, Y. C. Yu, W. Wang and E. K. Lin, ibid. 83(1998) 3172.CrossRefGoogle Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • S. K. Sharma
    • 1
  • V. Zaporojtchenko
    • 1
  • J. Zekonyte
    • 1
  • A. Buettner
    • 1
  • S. Deki
    • 2
  • F. Faupel
    • 3
  1. 1.Chair for Multicomponent MaterialsFaculty of Engineering of Christian-Albrechts UniversityGermany
  2. 2.Department of Chemical Science and EngineeringFaculty of Engineering Kobe UniversityNadaJapan
  3. 3.Chair for Multicomponent MaterialsFaculty of Engineering of Christian-Albrechts UniversityGermany

Personalised recommendations