Journal of Materials Science

, Volume 39, Issue 19, pp 5915–5924

The hypersonic environment: Required operating conditions and design challenges

  • D. M. Van Wie
  • D. G. DrewryJr.
  • D. E. King
  • C. M. Hudson
Article

Abstract

Hypersonic flight powered by airbreathing engines offers the potential for faster response time at long ranges, and reduced cost for access-to-space. In the present paper the operating environment of typical hypersonic vehicles are discussed, including results for the radiation equilibrium wall temperature of external vehicle surfaces and the flow properties through three sample engines spanning the range of hydrocarbon-fueled Mach 4-8 flight and hydrogen-fueled flight at speeds up to Mach 17. Flow conditions at several locations through the sample engines were calculated to provide indications of the required operating flow environment. Additional system consideration such a seals, joints, vehicle integration and in-service engineering are addressed.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. A. FAY and F. R. RIDDEL, J. Aeron. Sci. 25(2) (1958) 73.Google Scholar
  2. 2.
    E. R. VAN DRIEST, Jet Propulsion 26 (1956) 259.Google Scholar
  3. 3.
    J. D. ANDERSON, JR., “Hypersonic and High Temperature Gas Dynamics” (McGraw Hill, New York, 1989).Google Scholar
  4. 4.
    J. J. BERTIN, “Hypersonic Aerothermodynamics” (AIAA Education Series, Washington, 1994).Google Scholar
  5. 5.
    W. J. KRAWCZYK et al., AIAA-86-1596, 1986.Google Scholar
  6. 6.
    F. M. WHITE, “Viscous Fluid Flow” (McGraw Hill, New York, 1974).Google Scholar
  7. 7.
    E. J. EICHBLATT, JR., “Test and Evaluation of the Tactical Missile, ” AIAA Vol. 119, 1989.Google Scholar
  8. 8.
    D. M. CURRY and D. W. JOHNSON, “Orbital Reinforced Carbon/Carbon Design and Flight Experience, ” Space Shuttle Development Conference, July 1999.Google Scholar
  9. 9.
    W. W. TOKARSKY and R. J. DIEFENDORF, Polym. Engng. Sci. 15 (1975) 150.Google Scholar
  10. 10.
    R. W. BARTLETT, J. Amer. Ceram. Soc. 51 (1968) 114.Google Scholar
  11. 11.
    R. D. CARRAHAN, ibid. 51 (1968) 223.Google Scholar
  12. 12.
    R. F. VOITOVICH and E. A. PUGACH, Soviet Powder Metall. Metal Ceram. 12 (1973) 314.Google Scholar
  13. 13.
    V. RAMAN, R. DHAKATE and O. P. BAHL, J. Mater. Sci. Lett. 20 (2001) 315.Google Scholar
  14. 14.
    RUIYING LUO, ZHENG YANG and LIEFENG LI, Carbon 38 (2001) 2109.Google Scholar
  15. 15.
    J. MINET, F. LANGLAIS, J. M. QUENISSET and R. NASLAIN, J. Europ. Ceram. Soc. 5 (1989) 341.Google Scholar
  16. 16.
    L. A. FELDMAN, “High Temperature Creep Effects in Carbon Yarns and Composites, ” in Proceedings of the 17th Biennial Conference on Carbon-American Carbon Society (1985) p. 393.Google Scholar
  17. 17.
    K. M. PREWO, J. Mater. Sci. 21 (1986) 3590.Google Scholar
  18. 18.
    W. D. KINGERY, H. K. BOWN and D. R. UHLMANN, “Introduction to Ceramics” (John Wiley and Sons, New York, 1976).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • D. M. Van Wie
    • 1
  • D. G. DrewryJr.
    • 1
  • D. E. King
    • 1
  • C. M. Hudson
    • 1
  1. 1.The Johns Hopkins University, Applied Physics LaboratoryLaurelUSA

Personalised recommendations