Journal of Materials Science

, Volume 39, Issue 19, pp 5887–5904 | Cite as

Oxidation-based materials selection for 2000°C + hypersonic aerosurfaces: Theoretical considerations and historical experience

  • M. M. Opeka
  • I. G. Talmy
  • J. A. Zaykoski

Abstract

Hypersonic flight involves extremely high velocities and gas temperatures with the attendant necessity for thermal protection systems (TPS). New high temperature materials are needed for these TPS systems. A systematic investigation of the thermodynamics of potential materials revealed that low oxidation rate materials, which form pure scales of SiO2, Al2O3, Cr2O3, or BeO, cannot be utilized at temperatures of 1800°C (and above) due to disruptively high vapor pressures which arise at the interface of the base material and the scale. Vapor pressure considerations provide significant insight into the relatively good oxidation resistance of ZrB2- and HfB2-based materials at 2000°C and above. These materials form multi-oxide scales composed of a refractory crystalline oxide (skeleton) and a glass component, and this compositional approach is recommended for further development. The oxidation resistance of ZrB2-SiC and other non-oxide materials is improved, to at least 1600°C, by compositional modifications which promote immiscibility in the glass component of the scale. Other candidate materials forming high temperature oxides, such as rare earth compounds, are largely unexplored for high temperature applications and may be attractive candidates for hypersonic TPS materials.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. A. LEVINSTEIN, in Proceedings of Metallurgical Society Conference on Refractory Metals and Alloys, Chicago, April 1962, edited by M. Semchysen and I. Perlmutter (Interscience Publishers, New York, London, 1963) p. 269.Google Scholar
  2. 2.
    “High-Temperature Inorganic Coatings,” edited by J. Huminik (Reinhold, New York, 1963).Google Scholar
  3. 3.
    “Coatings of High-Temperature Materials,” edited by H. H. Hausner (Plenum, New York, 1966).Google Scholar
  4. 4.
    “Protective Coatings on Metals,” edited by G. V. Samsonov, English Translation (Consultants Bureau, New York, 1969) Vol. 1.Google Scholar
  5. 5.
    “Protective Coatings on Metals,” edited by G. V. Samsonov, English Translation (Amerind, New Delhi, 1984) Vol. 6.Google Scholar
  6. 6.
    C. M. PACKER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p. 235.Google Scholar
  7. 7.
    G. H. MEIER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p. 1.Google Scholar
  8. 8.
    T. GROBSTEIN and J. DOYCHAK (eds.), “Oxidation of High-Temperature Intermetallics” (TMS, 1988).Google Scholar
  9. 9.
    K. J. ZEITSCH and J. M. CRISCIONE, Technical Report WADD TR 61-72, Vol. XXX, AFML WPAFB, April 1964.Google Scholar
  10. 10.
    D. A. SCHULZ et al.,Technical Report WADD TR 61-72, Vol. XXXIV, AFML WPAFB, July 1964.Google Scholar
  11. 11.
    D. A. KRIVOSHEIN et al., Sov. Powd. Met. Met. Cer. 6 (1978) 460.Google Scholar
  12. 12.
    R. KIESSLING, Acta Chem. Scand. 4 (1950) 160.Google Scholar
  13. 13.
    B. POST et al., Acta Met. 2 (1954) 20.Google Scholar
  14. 14.
    R. STEINITZ et al., Trans. AIME, J. Metals 4 (1952) 983.Google Scholar
  15. 15.
    L. KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 1, AFML, WPAFB, OH, Dec. 1963.Google Scholar
  16. 16.
    L KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 2, AFML, WPAFB, OH, Feb. 1965.Google Scholar
  17. 17.
    E. V. CLOUGHERTYet al., in Proceedings of the 15th SAMPE Symposium, Vol. 15 (1969) p. 297.Google Scholar
  18. 18.
    J. R. FENTER, SAMPE Quar. 2 (1971) 1.Google Scholar
  19. 19.
    E. V. CLOUGHERTY et al., Technical Report AFML-TR-68-190, AFML, WPAFB, OH, July 1968.Google Scholar
  20. 20.
    E. V. CLOUGHERTY et al., Trans. AIME 242 (1968) 1077.Google Scholar
  21. 21.
    L. KAUFMAN and H. NESOR, Technical Report AFML-69-84, AFML, WPAFB, OH, March 1970.Google Scholar
  22. 22.
    L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, AFML, WPAFB, OH, 1962–1964.Google Scholar
  23. 23.
    J. B. BERKOWITZ-MATTUCK, Technical Report ASD-TDR-62-203, AFML, WPAFB, OH, 1962/1963.Google Scholar
  24. 24.
    P. T. B. SHAFFER, Cer. Bull. 41 (1962) 96.Google Scholar
  25. 25.
    H. PASTOR and R. MEYER, Rev. Int. Htes Temp. et Refract. II (1974) 41.Google Scholar
  26. 26.
    V. A. LAVRENKO, et al., Sov. Powd. Met. and Met. Cer. 21 (1982) 471.Google Scholar
  27. 27.
    L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, Part II, AFML, WPAFB, OH, May 1963.Google Scholar
  28. 28.
    F. H. BROWN, Progress Report No. 20-252, Jet Propulsion Laboratory, Pasadena, CA, 25 Feb 1955.Google Scholar
  29. 29.
    A. K. KURIAKOSE and J. L. MARGRAVE, J. Electrochem. Soc. 111 (1964) 827.Google Scholar
  30. 30.
    J. B. BERKOWITZ-MATTUCK, ibid. 113 (1966) 908.Google Scholar
  31. 31.
    L. A. MCCLAINE (ed.), Technical Report ASD-TDR-62-204, Part III, AFML, WPAFB, OH, April 1964.Google Scholar
  32. 32.
    L. KAUFMAN et al., Trans. AIME 239 (1967) 458.Google Scholar
  33. 33.
    H. C. GRAHAM et al., in “Ceramics in Severe Environments,” edited by W. W. Kriegel and H. Palmour (Plenum Press, NY, 1971).Google Scholar
  34. 34.
    W. C. TRIPP and H. C. GRAHAM, Solid State Science, 118 (1971) 1195.Google Scholar
  35. 35.
    R. F. VOITOVICH and E. A. PUGACH, Sov. Powd. Met. Met. Cer. 147 (1975) 70.Google Scholar
  36. 36.
    E. I. GOLOVKO and R. F. VOITOVICH, ibid. 190 (1978) 77.Google Scholar
  37. 37.
    A. LEBUGLE and C. MENTEL, Rev. int. Htes. Temp. et Refract. 11 (1974) 321.Google Scholar
  38. 38.
    J. W. HINZE et al., J. Electrochem. Soc. 122 (1975) 1249.Google Scholar
  39. 39.
    W. C. TRIPP et al., Ceram. Bull. 52 (1973) 612.Google Scholar
  40. 40.
    M. C. JISCHKE, Proc. Okla. Acad. Sci. 53 (1973) 81.Google Scholar
  41. 41.
    E. V. CLOUGHERTYet al., in Proceedings of the 15th National SAMPE Symposium (1969) Vol. 15, p. 297.Google Scholar
  42. 42.
    L. KAUFMAN, in Proceedings of AIAA Advanced Space Transportation Meeting (AIAA, NY, 1970) Paper 70-278.Google Scholar
  43. 43.
    J. D. BUCKLEY, Technical Report NASA TN D-4231, NASA, Wash DC, Oct. 1967.Google Scholar
  44. 44.
    M. L. HILL, in Proceedings of the AIAA/ASME 8th Conference on Structures, Structural Dynamics, and Materials (AIAA, NY, 1967) p. 248.Google Scholar
  45. 45.
    D. R. GASKELL, in “Introduction to Metallurgical Thermodynamics” (Hemisphere, New York, 1981).Google Scholar
  46. 46.
    C. H. P. LUPIS, in “Chemical Thermodynamics of Materials” (Elsevier, New York, 1983).Google Scholar
  47. 47.
    “Thermodynamics of Certain Refractory Compounds,” edited by H. Schick (Academic Press, New York and London, 1966) Vol. II.Google Scholar
  48. 48.
    “JANAF Thermochemical Tables,” 2nd ed., edited by D. R. Stull and H. Prophet (U.S. Dept. of Commerce, National Bureau of Standards, Washington D. C., 1971).Google Scholar
  49. 49.
    L. B. PANKRATZ, “Thermodynamic Properties of Elements and Oxides”, Bulletin 672 (U.S. Dept. of the Interior, Bureau of Mines, 1982).Google Scholar
  50. 50.
    O. KNACKE et al., in “Thermochemical Properties of Inorganic Substances” (Springer-Verlag, Berlin, 1991).Google Scholar
  51. 51.
    M. S. CHANDRASEKHARAIAHet al., J. Less-Common Met. 80 (1981) 9.Google Scholar
  52. 52.
    A. OLIVEI, ibid. 29 (1972) 11.Google Scholar
  53. 53.
    H. JEHN et al., ibid. 100 (1984) 321.Google Scholar
  54. 54.
    P. KOFSTAD, “High-Temperature Oxidation of Metals” (John Wiley & Sons, Inc., New York, London, Sydney, 1966).Google Scholar
  55. 55.
    C. T. SIMS et al., Trans. AIME (1955) 168.Google Scholar
  56. 56.
    C. T. SIMS et al., Technical Report WADC 56-319 ASTIA Document 110596 (1956).Google Scholar
  57. 57.
    W. W. SMELTZER and M. T. SIMNAD, Acta Metallurgica 6 (1957) 328.Google Scholar
  58. 58.
    R. E. PAWEL and J. J. CAMPBELL, J. Electrochem. Soc. 128 (1981) 1999.Google Scholar
  59. 59.
    B. E. DEAL and A. S. GROVE, J. Appl. Phys. 36 (1965) 3770.Google Scholar
  60. 60.
    C. S. GIGGINS and F. S. PETTIT, J. Electrochem. Soc. 118 (1971) 1782.Google Scholar
  61. 61.
    W. C. HAGEL, Trans. ASM 56 (1963) 583.Google Scholar
  62. 62.
    J. BOOKER, R. M. PAINE and A. J. STONEHOUSE, Technical Report WADD TR 60-889 (1961).Google Scholar
  63. 63.
    J. BOOKER, R. M. PAINE and A. J. STONEHOUSE, Technical Report WADD TR 60-889 (1962).Google Scholar
  64. 64.
    R. M. PAINE, A. J. STONEHOUSE and W. W. BEAVER, Corrosion 20 (1964) 307.Google Scholar
  65. 65.
    N. S. JACOBSON, J. Amer. Ceram. Soc. 76 (1993) 3.Google Scholar
  66. 66.
    J. R. STRIFE and J. E. SHEEHAN, Cer. Bull. 67 (1988) 369.Google Scholar
  67. 67.
    H. H. KELLOGG, Trans. Met. Soc. AIME 236 (1966) 602.Google Scholar
  68. 68.
    E. A. GULBRANSEN and S. A. JANSSON, in “Oxidation of Metals and Alloys” (ASM, Metals Park, OH, 1971) p. 63.Google Scholar
  69. 69.
    C. WAGNER, J. Appl. Phys. 29 (1958) 1295.Google Scholar
  70. 70.
    V. L. K. LOU, T. E. MITCHELL and A. H. HEUER, J. Amer. Ceram. Soc. 68 (1985) 49.Google Scholar
  71. 71.
    A. H. HEUER and V. L. K. LOU, ibid. 73 (1990) 2789.Google Scholar
  72. 72.
    E. A. GULBRANSEN, K. F. ANDREW and F. A. BRASSART, J. Electrochem. Soc. 113 (1966) 834.Google Scholar
  73. 73.
    G. R. ST PIERRE, in Proceedings of Conference on Gas-Solid Reactions in Pyrometallurgy, Purdue U., April 1986.Google Scholar
  74. 74.
    J. W. HINZE and H. C. GRAHAM, J. Electrochem. Soc. 123 (1976) 1066.Google Scholar
  75. 75.
    G. H. SCHIROKY, Adv. Ceram. Matls. 2 (1987) 137.Google Scholar
  76. 76.
    W. L. VAUGHN and H. G. MAAHS, J. Amer. Ceram. Soc. 73 (1990) 1540.Google Scholar
  77. 77.
    G. H. MEIER, in “Oxidation of High-Temperature Intermetallics,” edited by T. Grobstein and J. Doychak (TMS, 1988) p.1.Google Scholar
  78. 78.
    D. CAPLAN and G. I. SPROULE, Oxidation of Metals 9 (1975) 459.Google Scholar
  79. 79.
    R. A. RAPP, High Temperature Corrosion, ACS Course Notes, ACS, 1980, 60.Google Scholar
  80. 80.
    Z. ZHENG et al., J. Electrochem. Soc. 137 (1990) 854.Google Scholar
  81. 81.
    Z. ZHENG et al., ibid. 137 (1990) 2812.Google Scholar
  82. 82.
    L. KAUFMAN and H. NESOR, Technical Report AFML-69-84, Pt. III, Vol. III, AFML, WPAFB, OH, March 1970.Google Scholar
  83. 83.
    L. KAUFMAN and E. CLOUGHERTY, Technical Report RTD-TDR-63-4096, Part 2, AFML, WPAFB, OH, Feb. 1965.Google Scholar
  84. 84.
    I. G. TALMY, J. A. ZAYKOSKI and M. M. OPEKA Ceram. Eng. Sci. Proc. 19 (1998) 105.Google Scholar
  85. 85.
    W. W. WEYL and E. C. MARBOE, in “The Constitution of Glasses—A Dynamic Interpretation” (Interscience, New York, 1962) p. 618.Google Scholar
  86. 86.
    R. TURCOTTE et al.,Technical Report WL-TR-91-4059, AFML, WPAFB, OH, March 1992.Google Scholar
  87. 87.
    E. L. COURTWRIGHT et al., Technical Report WL-TR-91-4061, AFML, WPAFB, OH, Sept. 1992.Google Scholar
  88. 88.
    Unpublished data.Google Scholar
  89. 89.
    J. S. EVANGELIDES, Unpublished materials analyses.Google Scholar
  90. 90.
    J. B. BERKOWITZ-MATTUCK, Technical Report ASD-TDR-62-203 Part II, AFML, WPAFB, OH, March 1963.Google Scholar
  91. 91.
    C. B. BARGERON and R. C. BENSON, Surf. Coat. Tech. 36 (1988) 111.Google Scholar
  92. 92.
    C. B. BARGERON et al., JHU APL Tech. Digest 14 (1193) 29.Google Scholar
  93. 93.
    J. HENNEY and J. W. S. JONES, in “Special Ceramics 1964,” edited by P. Popper (Academic Press, London and NewYork, 1965) p. 35.Google Scholar
  94. 94.
    V. A. ZHILYAEV et al., Sov. Powd. Met. Met. Cer. 11 (1972) 632.Google Scholar
  95. 95.
    R. F. VOITOVICH and E. A. PUGACH, ibid. 12 (1973) 916.Google Scholar
  96. 96.
    E. J. WUCHINA and M. M. OPEKA, J. Electrochem. Soc. 99(38) (2000) 477.Google Scholar
  97. 97.
    G. R. HOLCOMB, “The High Temperature Oxidation of Hafnium Carbide,” Ph.D. Thesis, Ohio State University, 1988.Google Scholar
  98. 98.
    E. L. COURTRIGHT et al., Oxidation of Metals 36 (1991) 423.Google Scholar
  99. 99.
    I. G. TALMY et al., in Proceedings of the International Symposium on “High Temperature Corrosion and Materials Chemistry III,” edited by M. McNallan and E. Opila (The Electrochemical Society, Inc., Pennington, NJ, 2001) Vol. 2001–12, p. 144.Google Scholar
  100. 100.
    W. VOGEL, “Glass Chemistry,” 2nd ed. (Springer-Verlag, New York, 1994).Google Scholar
  101. 101.
    P. W. ATKINS, in “Physical Chemistry” (Oxford University Press, 1978).Google Scholar
  102. 102.
    F. P. GLASSER, I. WARSHAW and R. ROY, Phys. Chem. Glass. l (1960) 139.Google Scholar
  103. 103.
    B. G. VARSHAL, Glass Phys. Chem. 19 (1993) 1.Google Scholar
  104. 104.
    J. A. ZAYKOSKI et al., FY 2000 NSWC Res. Digest (2000) 95.Google Scholar
  105. 105.
    M. W. BARSOUM and T. EL-RAGHY, J. Amer. Ceram. Soc. 79 (1996) 1953.Google Scholar
  106. 106.
    J. FRYT and L. STOBIERSKI, Trans Tech Pubs., Switzerland, (1997) p. 1608.Google Scholar
  107. 107.
    N. F. GAO, MIYAMOTO and D. ZHANG, J. Mater. Sci. 18 (1999) 4385.Google Scholar
  108. 108.
    I. G. TALMY et al., in Proceedings of the International Symposium on “High Temperature Corrosion and Materials Chemistry IV,” edited by E. Opila, P. Hou, T. Maruyama, D. Shifler and E. Wuchina (The Electrochemical Society, Inc., Pennington, NJ, 2003) Vol. 2003–16, p. 361.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. M. Opeka
    • 1
  • I. G. Talmy
    • 1
  • J. A. Zaykoski
    • 1
  1. 1.Naval Surface Warfare Center Carderock DivisionWest BethesdaUSA

Personalised recommendations