Journal of Materials Science

, Volume 39, Issue 18, pp 5701–5709 | Cite as

Microstructural dependence of giant-magnetoresistance in electrodeposited Cu-Co alloys

  • T. Cohen-Hyams
  • J. M. Plitzko
  • C. J. D. Hetherington
  • J. L. Hutchison
  • J. Yahalom
  • W. D. Kaplan


The relationship between the microstructure and the magnetic properties of heterogeneous Cu-Co [Cu92.5-Co7.5] (at.%) thin films prepared by electrodeposition was studied. Electron spectroscopic imaging (ESI) studies clearly revealed the evolution of the cobalt microstructure as a function of thermal treatments. The as-deposited film is composed of more than one phase; metastable Cu-Co, copper and cobalt. During annealing the metastable phase decomposes into two fcc phases; Cu and Co. Grain growth occurs with increasing annealing duration, such that the cobalt grains are more homogeneously distributed in the copper matrix. A maximum GMR effect was found after annealing at 450°C for 1.5 h, which corresponds to an average cobalt grain size of 5.5 nm according to magnetization characterization. A significant fraction of the cobalt in the Cu-Co film did not contribute to the GMR effect, due to interactions between the different magnetic grains and large ferromagnetic (FM) grains. The percolation threshold of cobalt in metastable Cu-Co alloys formed by electrodeposition is lower (less than ∼7.5 at.%) than that prepared by physical deposition methods (∼35 at.%).


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    M. N. BAIBICH, J. M. BROTO, A. FERT, F. NGUYEN VAN DAU, F. PETROFF, P. ETIENNE, G. CREUSET, A. FRIEDERICH and J. CHAZELAS, Phys. Rev. Lett. 61 (1988) 2472.Google Scholar
  2. 2.
    W. SCHWARZACHER and D. S. LASHMORE, IEEE Trans. Magn. 32 (1996) 3133.Google Scholar
  3. 3.
    S. ZHANG, Appl. Phys. Lett. 61 (1992) 1855.Google Scholar
  4. 4.
    S. ZHANG and P. M. LEVY, J. Appl. Phys. 73 (1993) 5315.Google Scholar
  5. 5.
    K. YAMAMOTO and M. KITADA, Thin. SolidFilms 263 (1995) 111.Google Scholar
  6. 6.
    A. E. BERKOVITZ, J. R. MITCHELL, M. J. CAREY, A. P. YOUNG, F. E. SPADA, F. T. PARKER, A. H ÜTTEN and G. TOMAS, Phys. Rev. Lett. 68 (1992) 3745.Google Scholar
  7. 7.
    J. Q. XIAO, J. S. JIANG and C. L. CHIEN, ibid. 68 (1992) 3749.Google Scholar
  8. 8.
    J. YAHALOM and O. ZADOK, J. Mater. Sci. 21 (1987) 499.Google Scholar
  9. 9.
    H. J. BLYTHE and V. M. FEDOSYUK,Phys. Stat. Sol.(a) 146 (1994) K13.Google Scholar
  10. 10.
    O. F. BAKKALOGLU, I. H. KARAHAN, H. EFEOGLU, M. YILDIRIM, U. CEVIK and Y. K. YOGURTCU, J.Magn. Magn. Mater. 197 (1998) 53.Google Scholar
  11. 11.
    H. ZAMAN, A. YAMADA, H. FUKUDA and Y. UEDA, J. Electrochem. Soc. 145 (1998) 565.Google Scholar
  12. 12.
    P. E. BRADLEY and D. LANDLOT, Electrochim. Acta 45 (1999) 1077.Google Scholar
  13. 13.
    K. MIYAZAKI, S. KAINUMA, K. HISATAKE, T. WATANABE and N. FUKUMURO, ibid. 44(21/22) (1999) 3713.Google Scholar
  14. 14.
    S. H. GE, H. H. LI, C. LI, L. XI, W. LI and J. CHI, J. Phys.: Condens. Matter 12 (2000) 5905.Google Scholar
  15. 15.
    G. R. PATTANAIK, S. C. KASHYAP and D. K. PANDYA, J. Magn. Magn. Mater. 219 (2000) 309.Google Scholar
  16. 16.
    E. G ÓMEZ, A. LABERTA, A. LLORENTE and E. VALL É Z,J. Electroanal. Chem. 517 (2001) 63.Google Scholar
  17. 17.
    R. LÓ PEZ, J. HERREROS, A. GAR Ć IA-ARRIBAS, J. M. BARANDIAR Á N and M. L. FDEZ-GUBIEDA,J.Magn. Magn. Mater. 196-197 (1999) 53.Google Scholar
  18. 18.
    M. KU Ź MI Ń SKI, A. ŚLAWSKA-WANIEWSKA, H. K. LACHOWICZ and M. KNOBEL,ibid. 205 (1999) 7.Google Scholar
  19. 19.
    G. L. ZHOU, M. H. YANG and C. P. FLYNN, Phys. Rev. Lett. 77 (1996) 4580.Google Scholar
  20. 20.
    M. A. HOWSON, S. O. MUSA, M. J. WALKER, B. J. HICKEY, R. COCHRANE and R. STEVENS, J. Appl, Phys. 75(10) (1994) 6546.Google Scholar
  21. 21.
    O. I. KASYUTICH, T. A. TOCHITSKII and V. M. FEDOSYUK,Phys. Stat. Sol.(a) 162 (1997) 631.Google Scholar
  22. 22.
    X. SONG, S. W. MAHON. R. F. COCHRANE, B. J. HICKEY and M. A. HOWSON, Matt. Lett. 31, (1997) 261.Google Scholar
  23. 23.
    A. N. POHORILYI, A. F. KRAVETZ, E. V. SHIPIL, A. YA. VOVK, CHANG SIK KIM and H. R. KHAN, J. Magn. Magn. Mater. 186 (1998) 87.Google Scholar
  24. 24.
    W. WANG, F. ZHU, W. LAI, J. WANG, G. YANG, J. ZHU and Z. ZHANG, J. Phys. D: Appl. Phys. 32 (1999) 1990.Google Scholar
  25. 25.
    G. Y. YANGA, JING ZHU, W. D. WANG, Z. ZHANG and F. W. ZHU, Mater. Res. Bull. 35 (2000) 875.Google Scholar
  26. 26.
    J. J. KELLY, M. CANTONI and D. LANDOLT, J. Electrochem. Soc. 148 (2001) C620.Google Scholar
  27. 27.
    T. A. TOCHITSKII, G. A. JONES, H. J. BLYTHE, V. M. FEDOSYUK and J. CASTRO, J. Magn. Magn. Mater. 224 (2001) 221.Google Scholar
  28. 28.
    H. ERRAHMANI, A. BERRADA, G. SCHMERBER and A. DINIA, ibid. 238 (2002) 145.Google Scholar
  29. 29.
    G. R. PATTANAIK, D. K. PANDYA and S. C. KASHYAP, J. Electrochem. Soc. 149 (2002) C363.Google Scholar
  30. 30.
    L. BALCELLS, A. H ÜTTEN, J. BERNARDI, S. FRIEDRICHS and G. THOMAS, Scripta Metall. Mater. 33 (1995) 1647.Google Scholar
  31. 31.
    F. HOFER, P. WARBICHLER and W. GROGGER, Ultramicroscopy 59 (1995) 15.Google Scholar
  32. 32.
    J. M. PLITZKO and J. MAYER, ibid. 78 (1999) 207.Google Scholar
  33. 33.
    F. HOFER, W. GROGGER, G. KOTHLEITNER and P. WARBICHLER, ibid. 67 (1997) 83.Google Scholar
  34. 34.
    J. MAYER and J. M. PLITZKO, J. Microsc. 183(1) (1996) 2.Google Scholar
  35. 35.
    T. COHEN-HYAMS, W. D. KAPLAN, D. AURBACH, Y. S. COHEN and J. YAHALOM, J. Electrochem. Soc. 150(1) (2003) C28.Google Scholar
  36. 36.
    TH. H. DE KEIJSER, J. I. LANGFORD, E. J. MITTEMEIJER and A. B. P. VOGELS, J. Appl. Cryst. 15 (1982) 308.Google Scholar
  37. 37.
    S. KRUMN, WinFit 1.2.1, software/mfintro en.html.Google Scholar
  38. 38.
    I. T. WALKER, Department of Materials Science & Metallurgy, University of Cambridge, Pembroke Street, Cambridge. Snglinesizstrn.xlsGoogle Scholar
  39. 39.
    J. W. DINI, in "Electrodeposition" (Noyes, 1993) p. 156.Google Scholar
  40. 40.
    S. NAKAHARA and S. MAHAJAN, J. Electrochem. Soc. 127 (1982) 283.Google Scholar
  41. 41.
    S. F. PATIL, A. V. BORHADE and M. NATH, Appl. Radiat. Isot. 45 (1994) 1.Google Scholar
  42. 42.
    C. SCH ÖNENBERGER, B. M. I. VAN DER ZANDE, L. G. J. FOKKINK, M. HENNY, C. SCHMID, M. KRULGER, A. BACHTOLD, R. HUBER, H. BIRK and U. STAUFER, J. Phys. Chem. B 101 (1997) 5497.Google Scholar
  43. 43.
    M. PAUNOVIC and M. SCHLESINGER, “Fundamentals of Electrochemical Deposition,” (JohnWiley & Sons, NewYork, 1998) p. 188.Google Scholar
  44. 44.
    R. DÖHL, M.-P. MACHT and V. NAUNDORF,Phys. Stat. Sol. A 86 (1984) 603.Google Scholar
  45. 45.
    J. Q. XIAO, J. S. JIANG and C. L. CHIEN, Phys. Rev. B 46(14) (1992) 9266.Google Scholar
  46. 46.
    P. ALLIA, M. KNOBEL, P. TIBERTO and F. VINAI, ibid. B 52(21) (1995) 15398.Google Scholar
  47. 47.
    S. ZHANG and P. M. LEVY, J. Appl. Phys. 73 (1993) 5315.Google Scholar
  48. 48.
    E. F. FERRARI, F. C. S. DA SILVA and M. KNOBEL, Phys. Rev. B 56(10) (1997) 6086.Google Scholar
  49. 49.
    C. BELLOURAD, B. GEORGE and G. MARCHAL, J. Phys.: Condens. Mater. 6 (1994) 7239.Google Scholar
  50. 50.
    J. F. GREGG, S. M. THOMPSON, S. J. DAWSON, K. OUNADJELA, C. R. STADDON, J. HAMMAN, C. FERMON, G. SAUX and K. O'GRADY, Phys. Rev. B 49 (1994) 1064.Google Scholar
  51. 51.
    M. EL-HILO, K. O'GRADY and R. W. CHANTRELL, J. Appl. Phys. 76 (1994) 6811.Google Scholar
  52. 52.
    A. D. C. VIEGAS, J. GESHEV, L. S. DORNELES, J. E. SCHMIDT and M. KNOBEL, ibid. 82 (1997) 3047.Google Scholar
  53. 53.
    M. B. STEARNS and Y. CHENG, ibid. 75 (1994) 6894.Google Scholar
  54. 54.
    O. KITAKAMI, T. SAKURAI, Y. MIYASHITA, Y. TAKENO, Y. SHIMADA, H. TAKANO, H. AWANO, K. ANDO and Y. SUGITA, Jpn. J. Appl. Phys. 35 (1996) 1724.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Cohen-Hyams
    • 1
  • J. M. Plitzko
    • 2
  • C. J. D. Hetherington
    • 3
  • J. L. Hutchison
    • 3
  • J. Yahalom
    • 1
  • W. D. Kaplan
    • 1
  1. 1.Department of Materials EngineeringHaifaIsrael
  2. 2.Department of Molecular Structural BiologyMax-Planck-Institute of BiochemistryGermany
  3. 3.Department of MaterialsOxford UniversityUK

Personalised recommendations