Advertisement

Journal of Materials Science

, Volume 39, Issue 18, pp 5669–5672 | Cite as

Preparation and characterization of nano-hydroxyapatite/poly(vinyl alcohol) hydrogel biocomposite

  • Xu Fenglan
  • Li Yubao
  • Wang Xuejiang
  • Wei Jie
  • Yang Aiping
Article

Abstract

Nano-hydroxyapatite (n-HA) was used to make a new hydrogel biocomposite with poly(vinyl alcohol) (PVA) by a unique technique. Fourier transform infrared absorption spectra (IR), transmission electron microscopy (TEM), X-ray diffraction (XRD), thermogravimetric analysis (TG) and burning test were used to test the physical and chemical characteristics of the composite. Chemical binding between inorganic n-HA and poly(vinyl alcohol) was investigated and discussed. The results showed that the composite had good thermal stability and homogeneity. The n-HA crystals were uniformly distributed in the polymer matrix. The improved n-HA/PVA hydrogel could be used as an artificial articular cartilage, showing a promoting prospect.

Keywords

Polymer Burning Transmission Electron Microscopy Fourier Transform Absorption Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. BUCKWALTER and S. LOHMANDER, J. Bone Joint Surge 76A (1994) 1405.Google Scholar
  2. 2.
    A. WANG, A. ESSNER, V. K. POLINENI and C. STARK, Wear 1909 (1995) 226.Google Scholar
  3. 3.
    PEPPAS, A. NIKOLAOS, MONGIA and K. NEENA, Eur. J. Pharm. Biopharm. 43 (1997) 51.Google Scholar
  4. 4.
    S. H. HYON and W. I. CHA, J.Biomater. Sci. Polym. Edn. 5 (1994) 397.Google Scholar
  5. 5.
    T. H. YOUNG and W. Y. CHUANG, Biomaterials 23 (2002) 3495.Google Scholar
  6. 6.
    K. E. MOYER, A. DAVIS, G. C. SAGGERS and D. R. MACKAY, Exp. Molecular Pathol. 72 (2002) 10.Google Scholar
  7. 7.
    J. C. BRAY and E. W. MERRIL, J. Biomed. Mate. Res. 7 (1973) 431.Google Scholar
  8. 8.
    KOBAYASHI MASANORI, TOGUCHIDA JYUNYA and OKS MASANORI, Biomaterials 24 (2003) 639.Google Scholar
  9. 9.
    Z. Q. GU, J. M. XIAO and X. H. ZHANG, J. Biomed. Eng. 16 (1999) 13.Google Scholar
  10. 10.
    CAUICH-RODRIGUEZ JV, S. DED and R. SMITH, Bio-materials 17 (1996) 2259.Google Scholar
  11. 11.
    P. LOPOUR, Z. PLICHTA, Z. VOLFOVA, P. HRON and P. VONDRACEK, ibid. 14 (1993) 1051.Google Scholar
  12. 12.
    L. HENCH and J. WILSON, Science 226 (1984) 630.Google Scholar
  13. 13.
    P. DUCHEYNE, J. Biomed. Mater. Res: Appl. Biomater. 21 (1987) 2196.Google Scholar
  14. 14.
    U. HEISE, J. OSBORN and F. DUWE, Int Orthop 14 (1990) 329.Google Scholar
  15. 15.
    TOSHIAKI KITSUGI, TAKAO YAMAMURO, TAKASHI NAKAMURA, SEIYA KOTANI, TADASHI KOKUBO and HIROYASU TAKEUCHI, Biomaterials 14 (1993) 216.Google Scholar
  16. 16.
    A. RUS, M. WEI, C. SORRELL, M. DICKSON, A. BRANDWOOD and B. MITTHOPE, ibid. 16 (1995) 409.Google Scholar
  17. 17.
    LI YUBAO and K DE GROOT, J. Mater Sci.: Mater. Med. 5 (1994) 326.Google Scholar
  18. 18.
    WANG XUEJIANG, LI YUBAO, WEI JIE and KLASS DE GROOT, Biomaterials 23 (2002) 4787.Google Scholar
  19. 19.
    P. S. THOMAS and B. H. STURAT, Spectr. Acta Part A 53 (1997) 2275.Google Scholar
  20. 20.
    R. IWAMOTO, M. MIYA and S. MIMA, J. Polym. Sci: Polym. Phys. Ed. 17 (1979) 1507.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Xu Fenglan
    • 1
    • 2
  • Li Yubao
    • 1
    • 2
  • Wang Xuejiang
    • 1
    • 2
  • Wei Jie
    • 1
  • Yang Aiping
    • 1
    • 2
  1. 1.The Research Center for Nano-BiomaterialsSichuan UniversityChengduPeople's Republic of China
  2. 2.Analytical and Testing CenterSichuan UniversityChengduPeople's Republic of China

Personalised recommendations