Journal of Materials Science

, Volume 39, Issue 16–17, pp 5239–5242 | Cite as

The influence of grinding conditions on the mechanochemical synthesis of zinc stannate

Article

Abstract

The aim of this work is the investigation of experimental conditions for mechanochemical synthesis of spinel zinc stannate (Zn2SnO4). Application of this material include manufacturing of CO, H2, NO, NO2, i-C4H10 and C2H5OH gas sensors, production of transparent conducting electrodes, window coatings and anode for use in photoelectrochemistry. Starting powder mixtures of zinc oxide and tin oxide in the molar ratio, in accordance with the stoichiometrics of spinel zinc stannate, were mechanically activated by grinding in a planetary mill for various periods of time in the interval of 0 to 160 min. Changes of physico-chemical characteristics and microstructural parameters in the ZnO-SnO2 system after grinding were followed using surface area analysis and X-ray powder diffraction, while thermal behavior was examined by differential thermal analysis and sensitive dilatometer. The beginning of zinc stannate phase formation was noticed after 40 min of grinding, and prolonged grinding leads to the formation of spinel zinc stannate as the major phase with insignificant amount of unreacted zinc oxide and tin oxide. The formation of spinel was accelerated with the increase of sintering temperature, and monophased zinc stannate was obtained when powder mixture was grinded for 160 min followed by sintering at 1200°C.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    W. J. Moon, J. H. Yu and G. M. Choi, Sens. Act. B 87(2002) 464.Google Scholar
  2. 2.
    J. H. Yu and G. M. Choi, J. Electroceram. 8(2002) 249.Google Scholar
  3. 3.
    D. E. Scaife, Sol. Ener. 25(1980) 41.Google Scholar
  4. 4.
    J. H. Yu and G. M. Choi, Sens. Act. B 27(2001) 141.Google Scholar
  5. 5.
    W. J. Moon, J. H. Yu and G. M. Choi, ibid. 80(2001) 21.Google Scholar
  6. 6.
    Y. S. Shen and Z. T. Zhang, ibid. 12(1993) 5.Google Scholar
  7. 7.
    I. Stambolova, K. Konstantinov, D. Kovacheva, P. Peshev and T. Donchev, J. Solid State Chem. 128(1997) 305.Google Scholar
  8. 8.
    X. Wu, T. J. Coutts and W. P. Mulligan, J. Vac. Sci. Tech. A 15(1997) 1057.Google Scholar
  9. 9.
    G. Fu, H. Chen, Z. Chen, J. Zhang and H. Kohler, Sens. Act. B 81(2002) 308.Google Scholar
  10. 10.
    N. Hiratsuka, H. Kobayashi, H. Uchida and T. Katsube, J. Ceram. Soc. Japan, Int. Ed. 104(1996) 1053.Google Scholar
  11. 11.
    F. Belliard, P. A. Connor and J. T. S. Irvine, Solid State Ionics 135(2000) 163.Google Scholar
  12. 12.
    J. Fang, A. Huang, P. Zhu, N. Xu, J. Xie, J. Chi, S. Feng, R. Xu and M. G. Wu, Mater. Res. Bull. 36(2001) 1391.Google Scholar
  13. 13.
    W. Cun, W. Xinming, Z. Jincai, M. Bixian, S. Guoying, P. Pingan and F. Jiamo, J. Mater. Sci. 37(2002) 2989.Google Scholar
  14. 14.
    M. M. Ristic and S. Dj. Milosevic, "Mechanical Activation of Inorganic Materials" (Serbian Academy of Sciences and Arts, Belgrade, 1998) p. 5.Google Scholar
  15. 15.
    K. Tkacova, "Mechanical Activation of Minerals" (Elsevier, Amsterdam, 1989) p. 138.Google Scholar
  16. 16.
    M. Senna, Solid State Ionics 63–65(1993) 3.Google Scholar
  17. 17.
    T. Sreckovic, N. Nikolic, R. Novakovic and M. M. Ristic, Mater. Eng. 12(2001) 33.Google Scholar
  18. 18.
    G. V. Samsonov, "The Oxide Handbook" (IFI Plenum, New York, 1982) p. 202.Google Scholar
  19. 19.
    N. Nikolic, T. Sreckovic and M. M. Ristic, J. Eur. Ceram. Soc. 21(2001) 2071.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Institute of Technical Sciences of SASABelgradeSerbia and Montenegro.
  2. 2.Center for Multidisciplinary StudiesUniversity of BelgradeBelgradeSerbia and Montenegro

Personalised recommendations