Journal of Materials Science

, Volume 39, Issue 16–17, pp 5057–5065 | Cite as

The magnetic behaviour of nanostructured zinc ferrite

  • M. Hofmann
  • S. J. Campbell
  • H. Ehrhardt
  • R. Feyerherm


We have investigated a series of nanostructured ZnFe2O4 samples produced by mechanical activation (mean particle sizes d ∼50-8 nm) by variable temperature neutron diffraction measurements (2-535 K) supported by DC magnetisation measurements (4.2-300 K). The systematic increase in the mean inversion parameter (c ∼0.04-0.43) with increasing milling time is accompanied by a gradual decrease in the occurrence of the long range antiferromagnetic ordering observed in the starting ZnFe2O4 material, as well as a gradual decrease in the related diffuse short range order peak. The neutron diffraction patterns of particles with d < ∼15 nm and c> ∼0.2 are consistent with the occurrence of ferrimagnetic order and exchange interactions of the type Fe3+A—O2−—Fe3+ [B]. Diagrams summarising the magnetic regions of nanostructured ZnFe2O4 are presented. The magnetic behaviour overall agrees well with the enhanced magnetisation and ferromagnetic behaviour reported for nanostructured, ultrafine and thin films of ZnFe2O4 by other groups using mainly magnetisation and Mössbauer spectroscopy measurements.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    V. ŠepelÁk, K. Jancke, J. Richter-mendau, U. Steinike, D.-Chr. Uecker and A. Yu. Rogachev, Kona 12(1994) 87.Google Scholar
  2. 2.
    P. Druska, U. Steinike and V. ŠepelÁk, J. Solid State Chem. 146(1999) 13.Google Scholar
  3. 3.
    M. Ahmed, L. Alonso, J. M. Palacios, C. Cilleruelo and J. C. Abanades, Solid State Ionics 138(2000) 51.Google Scholar
  4. 4.
    S. J. Campbell and W. A. Kaczmarek, in"MÖssbauer Spectroscopy Applied to Magnetism and Magnetic Materials," edited by G. J. Long and F. Grandjean (Plenum Press, New York, 1996) Vol. 2, p. 273.Google Scholar
  5. 5.
    Yu. T. Pavljukhin, Ya. Ya. Medikov and V. V. Boldyrev, Mater. Res. Bull. 18(1983) 1317.Google Scholar
  6. 6.
    K. TkÁcovÁ, V. ŠepelÁk, N. ŠtevulovÁ and V. V. Boldyrev, J Solid State Chem. 123(1996) 100.Google Scholar
  7. 7.
    V. ŠepelÁk, M. Zatroch, K. TkÁcovÁ, P. Petrovic, S. Wißmann and K. D. Becker, Mater Sci. Eng. A 226–228(1997) 22.Google Scholar
  8. 8.
    V. ŠepelÁk, S. Wißmann and K. D. Becker, J. Mater. Sci. 33(1998) 2845.Google Scholar
  9. 9.
    Idem., J. Magn. Magn. Mater. 203(1999) 135.Google Scholar
  10. 10.
    G. F. Goya and H. R. Rechenberg, ibid. 196/197 (1999) 192.Google Scholar
  11. 11.
    J. Z. Jiang, P. Wynn, S. MØrup, T. Okada and F. J. Berry, Nanostruct. Mater. 12(1999) 737.Google Scholar
  12. 12.
    C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. GuÉrault and J.-M. GrenÉche, J. Phys.: Condens. Matter 12(2000) 7795.Google Scholar
  13. 13.
    S. A. Oliver, V. G. Harris, H. H. Hamdeh and J. C. Ho, Appl. Phys. Lett. 76(2000) 2761.Google Scholar
  14. 14.
    T. Sato, K. Haneda, M. Seki and T. Iijima, Appl. Phys. A 50(1990) 13.Google Scholar
  15. 15.
    H. H. Hamdeh, J. C. Ho, S. A. Oliver, R. J. Willey, G. Oliveri and G. Busca, J. Appl. Phys. 81(1997) 1851.Google Scholar
  16. 16.
    S. A. Oliver, H. H. Hamdeh and J. C. Ho, Phys. Rev.B 60(1999) 3400.Google Scholar
  17. 17.
    S.-H. Yu, T. Fujino and M. Yoshimura, J. Magn. Magn. Mater. 256(2003) 420.Google Scholar
  18. 18.
    A. Kundu, C. Upadhyay and H. C. Verma, Physics LettersA (in press).Google Scholar
  19. 19.
    K. Tanaka, S. Nakashima, K. Fujita and K. Hirao, J. Phys.: Condens. Matter 15(2003) L469.Google Scholar
  20. 20.
    K. E. Sickafus, J. W. Wills and N. W. Grimes, J. Amer. Ceram. Soc. 82(1999) 3279.Google Scholar
  21. 21.
    W. Schiessl, W. Potzel, H. Karzel, M. Steiner, G. M. Kalvius, A. Martin, M. K. Krause, I. Halevy, J. Gal, W. SchÄfer, G. Will, M. Hillberg and R. WÄppling, Phys. Rev.B 53(1996) 9143.Google Scholar
  22. 22.
    W. Potzel, W. SchÄfer and G. M. Kalvius, Hyper-fine Interactions 130(2000) 241.Google Scholar
  23. 23.
    C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian and K. Chattopadhyay, Mater. Sci. Eng.A 304–306(2001) 983.Google Scholar
  24. 24.
    C. N. Chinnasamy, A. Narayanasamy, N. Ponpandian, K. Chattopadhyay, H. GuÉrault and J.-M. GrenÉche, Scripta Mater. 44(2001) 1407.Google Scholar
  25. 25.
    H. Ehrhardt, S. J. Campbell and M. Hofmann, J. Alloys Compd. 339(2002) 255.Google Scholar
  26. 26.
    W. SchÄfer, W. Kockelmann, A. Kirfel, W. Potzel, F. J. Burghart, G. M. Kalvius, A. Martin, W. A. Kaczmarek and S. J. Campbell, Mater. Sci. Forum 321–324(2000) 802.Google Scholar
  27. 27.
    F. J. Burghart, W. Potzel, G. M. Kalvius, E. Schreier, G. Grosse, D. R. Noakes, W. SchÄfer, W. Kockelmann, S. J. Campbell, W. A. Kaczmarek, A. Martin and M. K. Krause, PhysicaB 289/290(2000) 286.Google Scholar
  28. 28.
    H. Ehrhardt, S. J. Campbell and M. Hofmann, Scripta Materialia 48(2003) 1141.Google Scholar
  29. 29.
    B. Jeyadevan, K. Tohji and K. Natsukasa, J. Appl. Phys. 76(1994) 6325.Google Scholar
  30. 30.
    J. M. Hastings and M. Corliss, Phys. Rev. 15(1956) 1008.Google Scholar
  31. 31.
    T. Usa, K. Kamazawa, S. Nakamura, H. Sekiya, Y. Tsunoda, K. Kohn and M. Tanaka, in "Proc. Eighth Int. Conf. on Ferrites," edited by M. Abe and Y. Yamazaki (Kyoto, 2000) p. 316.Google Scholar
  32. 32.
    K. Kamazawa, Y. Tsunoda, H. Kadowaki and K Kohn, Phys. Rev.B {vn68}024412 (2003).Google Scholar
  33. 33.
    G. F. Goya, H. R. Rechenberg, M. Chen and W. B. Yelon, J. Appl. Phys. 87(2000) 8005.Google Scholar
  34. 34.
    Fullprof, Program for Rietveld-Refinement of X-ray and Neutron diffraction patterns, by Juan Rodriguez-Carvajal, Laboratoire Leon Brillouin (CEA-CNRS, 2000), http://wwwllb. Scholar
  35. 35.
    M. K. Fayek, J. Leciejewicz, A. Murasik and I. I. Yamzin, Phys. Stat. Sol. 37(1970) 843.Google Scholar
  36. 36.
    V. ŠepelÁk, Ann. Chim. Sci. Mat. 27(2002) 61.Google Scholar
  37. 37.
    J. L. Dormann and M. Nogues, J. Phys.: Condens. Matter 2(1990) 1223.Google Scholar
  38. 38.
    G. F. Goya and E. R. Leite, ibid. 15(2003) 641.Google Scholar
  39. 39.
    Y. Labaye, O. Crisan, L. Berger, J.-M. Greneche and J. M. D. Coey, J. Appl. Phys. 91(2002) 8715.Google Scholar
  40. 40.
    C. M. Srivastava, S. N. Shringi and M. Vijayababu, Bull. Mater. Sci. 6(1984) 27.Google Scholar
  41. 41.
    U. KÖnig, E. F. Bertaut, Y. Gros, M. Mitrikov and G. Chol, Solid State Comm. 8(1970) 759.Google Scholar
  42. 42.
    B. Boucher, R. Buhl and M. Perrin, Phys. Stat. Sol. 41(1970) 171.Google Scholar
  43. 43.
    V. G. Vologin, Sov. Phys. Solid State 29(1987) 1339.Google Scholar
  44. 44.
    Yu. G. Chukalkin and V. R. Shtirts, ibid. 30(1988) 1683.Google Scholar
  45. 45.
    Y. Yamada, K. Kamazawa and Y. Tsunoda, Phys. Rev.B 66(2002) 064401.Google Scholar
  46. 46.
    S. H. Lee, C. Broholm, W. Ratcliff, G. Gasparovic, Q. Huang, T. H. Kim and S. W. Cheong, Nature 418(2002) 856.PubMedGoogle Scholar
  47. 47.
    J. Villain, Z. PhysikB 33(1979) 31.Google Scholar
  48. 48.
    V. R. N. Bhowmik and R. Ranganathan, J. Magn. Magn. Mater. 248(2002) 101.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Hofmann
    • 1
  • S. J. Campbell
    • 1
    • 2
  • H. Ehrhardt
    • 2
    • 3
  • R. Feyerherm
    • 4
  1. 1.Technische Universität MünchenGarchingGermany
  2. 2.School of Physical, Environmental and Mathematical SciencesUniversity of New South Wales, Australian Defence Force AcademyCanberraAustralia.
  3. 3.Institut für Nanotechnologie, Forschungszentrum Karlsruhe GmbHKarlsruheGermany
  4. 4.Hahn-Meitner-Institut, BENSCBerlinGermany

Personalised recommendations