Journal of Materials Science

, Volume 39, Issue 14, pp 4465–4474 | Cite as

Plasticity in pentacene thin films

  • L. F. Drummy
  • P. K. Miska
  • D. C. Martin


We have investigated the structure, defects and plasticity of thermally evaporated thin films of the organic molecular semiconductor pentacene using X-ray Diffraction (XRD), Optical microscopy (OM), Transmission Electron Microscopy (TEM), Electron Diffraction (ED), and High Resolution Electron Microscopy (HREM). Using XRD the degree of (001) texturing present in the as-grown films was characterized. The nature of pentacene plasticity and deformation-induced molecular alignment was investigated using rubbing and scratching techniques, as well as nanoindentation. Rubbing of the bulk powder produced thin oriented films, and a deformation length scale dependence was seen. Under stress pentacene crystals initially fail by cracking, until they reach a critical size of about one micron, when they tend to plastically deform into thin sheets. Alignment of thermally evaporated films was achieved under a controlled load scratch, and the degree of molecular orientation inside the scratched region was directly imaged using HREM. Finally, using nanoindentation we measured pentacene's plastic hardness to be 0.25 GPa at a loading rate 0.05 mN/s. A loading rate dependence of the hardness and stiffness was measured, with thin films behaving harder and stiffer at faster indentation rates.


Electron Diffraction Scale Dependence Molecular Orientation Pentacene High Resolution Electron Microscopy 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    C. D. Dimitrakopoulos and P. R. L. Malenfant, Adv. Mat. 14 (2002) 99.Google Scholar
  2. 2.
    Y.-Y. Lin, D. J. Gundlach, S. F. Nelson and T. N. Jackson, IEEE Trans. Electron Dev. 18 (1997) 87.Google Scholar
  3. 3.
    M. Halik et al., Adv. Mat. 14 (2002) 1717.Google Scholar
  4. 4.
    J. G. Laquindanum, H. E. Katz, A. J. Lovinger and A. Dodabalapur, Chem. Mater. 8 (1996) 2542.Google Scholar
  5. 5.
    J. M. Peterson, J. Appl. Phys. 37 (1966) 4047.Google Scholar
  6. 6.
    R. J. Young, Phil. Mag. 30 (1974) 85.Google Scholar
  7. 7.
    J. Morgado, F. Cacialli, J. Gruner, N. C. Greenham and R. H. Friend, J. Appl. Phys. 85 (1999) 1784.Google Scholar
  8. 8.
    M. Suzuki, A. Ferencz, S. Iida, V. Enkelmann and G. Wegner, Adv. Mat. 5 (1993) 359.Google Scholar
  9. 9.
    I. Moggio et al., Macromolecules 43 (2001) 7091.Google Scholar
  10. 10.
    H. Yanagi, S. Doumi and T. Sasaki, J. Appl. Phys. 80 (1996) 4990.Google Scholar
  11. 11.
    M. L. Swiggers et al., Appl. Phys. Lett. 79 (2001) 1300.Google Scholar
  12. 12.
    J. O. OssÓ et al., Adv. Func. Mat. 12 (2002) 455.Google Scholar
  13. 13.
    J. M. Geary, J. W. Goodby, A. R. Kmetz and J. S. Patel, J. Appl. Phys. 62 (1987) 4100.Google Scholar
  14. 14.
    T. Ehara, H. Hirose, H. Kobayashi and M. Kotani, Synth. Met. 109 (2000) 43.Google Scholar
  15. 15.
    X. L. Chen, A. J. Lovinger, Z. N. Bao and J. Sapjeta, Chem. Mat. 13 (2001) 1341.Google Scholar
  16. 16.
    A. V. Kulkarni and B. Bhushan, J. Mat. Res. 12 (1997) 2707.Google Scholar
  17. 17.
    M. Oyen-Tiesma, Y. A. Toivola and R. F. Cook, MRS Proceedings 649 (2001) Q1.5.1.Google Scholar
  18. 18.
    C. J. Buchko, M. J. Slattery, K. M. Kozloff and D. C. Martin, J. Mat. Res. 15 (2000) 231.Google Scholar
  19. 19.
    D. C. Martin and E. L. Thomas, Polymer 36 (1995) 1743.Google Scholar
  20. 20.
    D. Holmes, S. Kumaraswamy, A. J. Matzger and K. P. C. Vollhardt, Chem. Eur. Journ. 5 (1999) 3399.Google Scholar
  21. 21.
    C. C. Mattheus et al., Acta. Cryst. C 57 (2001) 939.Google Scholar
  22. 22.
    D. J. Gundlach, Y.-Y. Lin, T. N. Jackson, S. F. Nelson and D. G. Schlom, IEEE Electron Dev. Lett. 18 (1997) 87.Google Scholar
  23. 23.
    I. P. M. Bouchoms, W. A. Schoonveld, J. Vrijmoeth and T. M. Klapwijk, Synth. Met. 104 (1999) 175.Google Scholar
  24. 24.
    C. D. Dimitrakopoulos, A. R. Brown and A. Pomp, J. Appl. Phys. 80 (1996) 2501.Google Scholar
  25. 25.
    T. Jentzch, H. J. Juepner, K.-W. Brzezinka and A. Lau, Thin Solid Films 315 (1998) 273.Google Scholar
  26. 26.
    L. F. Drummy, P. Miska and D. C. Martin, MRS Proceedings 734 (2003) A2.2.1.Google Scholar
  27. 27.
    L. F. Drummy, C. KÜbel, D. Lee, A. White and D. C. Martin, Adv. Mat. 14 (2002) 54.Google Scholar
  28. 28.
    C. Galiotis, R. T. Read, P. H. J. Yeung and R. J. Young, J. Polym. Sci. 22 (1984) 1589.Google Scholar
  29. 29.
    Z. N. Bao, A. J. Lovinger and A. Dodabalapur, Adv. Mat. 9 (1997) 42.Google Scholar
  30. 30.
    J. H. Lee et al., J. Kor. Phys. Soc. 38 (2001) 282.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringUniversity of MichiganAnn ArborUSA

Personalised recommendations