Advertisement

Journal of Materials Science

, Volume 39, Issue 12, pp 3965–3974 | Cite as

Role of minor alloying additions in formation of bulk metallic glasses: A Review

  • Z. P. Lu
  • C. T. Liu
Article

Abstract

Minor alloying addition or microalloying technology has already shown dramatic effects on glass formation and thermal stability of bulk metallic glasses (BMGs). This paper intends to provide a comprehensive review of recent developments of this technology in the field of BMGs. The beneficial effects of minor alloying additions on the glass formation and the thermal stability of BMGs will be summarized and analyzed. In addition, principles and guidelines for future application of this technology will also be proposed.

Keywords

Polymer Beneficial Effect Thermal Stability Metallic Glass Future Application 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Inoue, in “Bulk Amorphous Alloys: Practical Characteristics and Applications,” Materials Science Foundations 6, edited by M. Magini and F. H. Wohlbier (Trans Tech Publications Inc., Swizerland, 1999).Google Scholar
  2. 2.
    A. Inoue, in “Bulk Amorphous Alloys: Preparation and Fundamental Characteristics,” Materials Science Foundations 4, edited by M. Magini and F. H. Wohlbier (Trans Tech Publications Inc., Swizerland, 1998).Google Scholar
  3. 3.
    W. L. Johnson MRS Bull. 24 (1999) 42.Google Scholar
  4. 4.
    H. Choi-Yim, R. Busch and W. L. Johnson J. Appl. Phys. 83 (1998) 7993.Google Scholar
  5. 5.
    C. T. Liu, M. F. Chisholm and M. K. Miller Intermetallics 10 (2002) 1105.Google Scholar
  6. 6.
    C. T. Liu, C. L. White and J. A. Horton Acta. Mater. 33 (1985) 213.Google Scholar
  7. 7.
    T. Nishizawa Mater. Trans. 42 (2001) 2027.Google Scholar
  8. 8.
    J. Eckert, M. Mattern, M. Zinkevitch and M. Seidel Mater. Trans. JIM 39 (1998) 623.Google Scholar
  9. 9.
    B. S. Murty, D. H. Ping, K. Hono and A. Inoue Acta. Mater. 48 (2000) 3985.Google Scholar
  10. 10.
    K. Ozaki, K. Kobayashi and T. Nishio Mater. Trans. JIM 39 (1998) 499.Google Scholar
  11. 11.
    W. H. Wang and H. Y. Bai J. Appl. Phys. 84 (1998) 5961.Google Scholar
  12. 12.
    W. H. Wang, Q. Wei and H. Y. Bai Appl. Phys. Lett. 71 (1997) 58.Google Scholar
  13. 13.
    Y. Zhang, D. Q. Zhao, M. X. Pan and W. H. Wang J. Non-Cryst. Solids 315 (2003) 206.Google Scholar
  14. 14.
    A. A. Kundig et al., Mater. Trans. 43 (2002) 3206.Google Scholar
  15. 15.
    H. Choi-Yim, D. Xu and W. L. Johnson Appl. Phys. Lett. 82 (2003) 1030.Google Scholar
  16. 16.
    A. Inoue and X. M. Wang Acta Mater. 48 (2000) 1383.Google Scholar
  17. 17.
    A. Inoue, T. Negishi, H. Kimura and T. Aoki Mater. Trans. JIM 38 (1997) 185.Google Scholar
  18. 18.
    A. Inoue, T. Aoki and H. Kimura ibid. 38 (1997) 175.Google Scholar
  19. 19.
    W. H. Wang et al., Intermetallics 10 (2002) 1249.Google Scholar
  20. 20.
    S. Yi, J. K. Lee, W. T. Kim and D. H. Kim J. Non-Cryst. Solids 291 (2001) 132.Google Scholar
  21. 21.
    A. Inoue, A. Murakami, T. Zhang and A. Takeuchi Mater. Trans. JIM 38 (1997) 189.Google Scholar
  22. 22.
    S. Yi, T. G. Park and D. H. Kim J. Mater. Res. 15 (2000) 2425.Google Scholar
  23. 23.
    B. Shen and A. Inoue Mater. Trans. 43 (2002) 1235.Google Scholar
  24. 24.
    D. Q. Zhao, Y. Zhang, M. X. Pan and W. H. Wang Mater. Trans. JIM 41 (2000) 1427.Google Scholar
  25. 25.
    T. Zhang, T. Yamamoto and A. Inoue Mater. Trans. 43 (2002) 3222.Google Scholar
  26. 26.
    G. J. Fan et al., Appl. Phys. Lett. 75 (1999) 2984.Google Scholar
  27. 27.
    C. L. Qin et al., Mater. Trans. 44 (2003) 1042.Google Scholar
  28. 28.
    H. Men, Z. Q. Hu and J. Xu Scripta Mater. 46 (2002) 699.Google Scholar
  29. 29.
    A. Inoue, T. Shibata and T. Zhang Mater. Trans. JIM 36 (1995) 1420.Google Scholar
  30. 30.
    N. Mitrovic, S. Roth and J. Eckert Appl. Phys. Lett. 78 (2001) 2145.Google Scholar
  31. 31.
    L. Q. Ma, L. Wang, T. Zhang and A. Inoue Mater. Res. Bullet. 34 (1999) 915.Google Scholar
  32. 32.
    A. Inoue and B. Shen Mater. Trans. 43 (2002) 1230.Google Scholar
  33. 33.
    D. W. Xing et al., T. Nonferr. Metal. Soc. 13 (2003) 68.Google Scholar
  34. 34.
    T. Itoi and A. Inoue Mater. Trans. JIM 41 (2000) 1256.Google Scholar
  35. 35.
    Q. S. Zhang et al., Scripta Mater. 49 (2003) 273.Google Scholar
  36. 36.
    E. S. Park, H. K. Lim, W. T. Kim and D. H. Kim J. Non-Cryst. Solids 298 (2002) 15.Google Scholar
  37. 37.
    J. F. Sun et al., T. Nonferr. Trans. 13 (2003) 64.Google Scholar
  38. 38.
    T. Zhang and A. Inoue Mater. Trans. JIM 39 (1998) 1001.Google Scholar
  39. 39.
    Y. Zhang et al. ibid. 41 (2000) 1410.Google Scholar
  40. 40.
    T. Zhang, K. Kurosaka and A. Inoue ibid. 42 (2001) 2042.Google Scholar
  41. 41.
    Z. P. Lu, C. T. Liu and W. D. Porter Appl. Phys. Lett. 83 (2003) 2581.Google Scholar
  42. 42.
    Z. P. Lu and C. T. Liu J. Mater. Res. 19 (2004) 92.Google Scholar
  43. 43.
    Y. Hu et al., Mater. Lett. 57 (2003) 2698.Google Scholar
  44. 44.
    C. T. Liu, L. M. Pike and N. G. Chen Mater. Res. Soc. Symp. Proc. 554 (1999) 305.Google Scholar
  45. 45.
    O. N. Senkov and D. B. Miracle Mater. Res. Bullet. 36 (2001) 2183.Google Scholar
  46. 46.
    A. Gebert, J. Eckert and L. Schultz Acta Mater. 46 (1998) 5475.Google Scholar
  47. 47.
    T. D. Shen and R. B. Schwarz Appl. Phys. Lett. 75 (1999) 49.Google Scholar
  48. 48.
    X. H. Lin, W. L. Johnson and W. K. Rhim Mater. Trans. JIM 38 (1997) 473.Google Scholar
  49. 49.
    Z. P. Lu and C. T. Liu Acta Mater. 50 (2002) 3501.Google Scholar
  50. 50.
    D. J. Sordelet et al., Appl. Phys. Lett. 83 (2003) 69.Google Scholar
  51. 51.
    Z. P. Lu and C. T. Liu Phys. Rev. Lett. 91 (2003) 115505.Google Scholar
  52. 52.
    M. H. Richman, “An Introduction to Physical Metallurgy” (Blaisdell, Massachusetts, 1967) p. 215.Google Scholar
  53. 53.
    F. R. De Boer, R. Boom, W. C. M. Matterns, A. R. Miedema and A. K. Niessen, “Cohesion in Metals” (North-Holland, Amsterdam, 1988).Google Scholar
  54. 54.
    E. Matsubara et al., Mater. Trans. JIM 31 (1990) 228.Google Scholar
  55. 55.
    E. Matsubara et al. ibid. 3 (1992) 873.Google Scholar
  56. 56.
    E. Matsubara et al., J. Non-Cryst. Solids 150 (1992) 873.Google Scholar
  57. 57.
    H. Tanaka J. Phys. Condens. Mater. 15 (2003) L491.Google Scholar
  58. 58.
    O. Kubaschewski and C. B. Alcock, “Metallurgical Thermochemistry” (Pergamon, Oxford, 1979).Google Scholar
  59. 59.
    A. Inoue and G. S. Gook Mater. Trans. JIM 36 (1995) 1180.Google Scholar
  60. 60.
    H. Tan et al., Acta Mater. 51 (2003) 4551.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Metals and Ceramic DivisionOak Ridge National LaboratoryUSA

Personalised recommendations