Journal of Materials Science

, Volume 39, Issue 12, pp 3913–3925

Reliability of the diffusion-multiple approach for phase diagram mapping

  • J.-C. Zhao


The diffusion-multiple approach can be used to map phase diagrams at an efficiency orders of magnitude faster than the conventional equilibrated alloy method. This paper addresses a concern about the reliability of the results, especially whether the data obtained from diffusion multiples can produce reliable equilibrium phase diagrams. The following topics will be discussed: (a) establishment of local equilibrium at the phase interfaces, (b) X-ray interaction volume vs. thickness of the phases (microprobe related issues), (c) reliability of phase diagrams from equilibrated alloys, (d) usefulness of electron backscatter diffraction, (e) impurity-induced stabilization of metastable phases, and, (f) missing phase situations. A direct comparison of several ternary systems obtained from both diffusion multiples and equilibrated alloys was made. The good agreement between them clearly demonstrates the reliability of phase diagrams determined from diffusion multiples.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. C. Roberts Proc. Roy. Soc. 23 (1875) 481.Google Scholar
  2. 2.
    P. Villars, in “Intermetallic Compounds: Principles and Practice,” edited by J. H. Westbrook and R. L. Fleischer (John Wiley & Sons, NY, 1995) Vol. 1, p. 227.Google Scholar
  3. 3.
    R. Yang, J. A. Leake and R. W. Cahn J. Mater. Res. 6 (1991) 343.Google Scholar
  4. 4.
    R. Yang, S. V. Parker, J. A. Leake and R. W. Cahn, in “Alloy Phase Stability and Design,” edited by G. M. Stocks and P. Turchi (TMS, Warrendale, PA, 1994).Google Scholar
  5. 5.
    R. W. Cahn J. Sci. Instr. 30 (1953) 201.Google Scholar
  6. 6.
    H. M. Otte and R. W. Cahn ibid. 36 (1959) 463.Google Scholar
  7. 7.
    R. W. Cahn MRS Bull. 25(9) (2000) 59.Google Scholar
  8. 8.
    J.-C. Zhao Adv. Eng. Mater. 3 (2001) 143.Google Scholar
  9. 9.
    J.-C. Zhao J. Mater. Res. 16 (2001) 1565.Google Scholar
  10. 10.
    Y. K. Yoo, F. Duewer, H. Yang, D. Yi, J.-W. Li and X.-D. Xiang Nature 406 (2000) 704.Google Scholar
  11. 11.
    J.-C. Zhao, M. R. Jackson, L. A. Peluso and L. Brewer MRS Bulletin 27 (2002) 324.Google Scholar
  12. 12.
    J.-C. Zhao JOM 54(7) (2002) 42.Google Scholar
  13. 13.
    F. J. J. Van Loo, G. F. Bastin, J. W. Q. A. Vrolijk and J. J. M. Hendriks J. Less-Comm. Met. 72 (1980) 225.Google Scholar
  14. 14.
    J.-C. Zhao and M. F. Henry, to be published.Google Scholar
  15. 15.
    G. Shao and P. Tsakiropoulos Intermetallics 7 (1999) 579.Google Scholar
  16. 16.
    J.-C. Zhao, M. R. Jackson and L. A. Peluso, to be published.Google Scholar
  17. 17.
    A. Hellwig, M. Palm and G. Inden Intermetallics 6 (1998) 79.Google Scholar
  18. 18.
    S. Das, T. J. Jewett and J. H. Perepezko, in “Structural Intermetallics,” edited by R. Darolia, J. J. Lewandowski, C. T. Liu, P.L. Martin, D. B. Miracle and M. V. Nathal (TMS, Warrendale, PA, 1993) p. 35.Google Scholar
  19. 19.
    J. H. Perepezko, Y. A. Chang, L. E. Seitzman, J. C. Lin, N. R. Bond, R. J. Lwett and J. C. Mishurda, in “High Temperature Aluminides and Intermetallics,” edited by S. H. Whang, C. T. Liu, D. P. Pope and J. O. Stiegler (TMS, Warrendale, PA, 1990) p. 19.Google Scholar
  20. 20.
    K. Kaltenbach, S. Gama, D. G. Pinatti, K. Schulze and E. T. Henig Z. Metallkde. 80 (1989) 535.Google Scholar
  21. 21.
    J.-C. Zhao, M. R. Jackson, L. A. Peluso and L. Tan, to be published.Google Scholar
  22. 22.
    F. J. J. Van Loo Prog. Solid St. Chem. 20 (1990) 47.Google Scholar
  23. 23.
    A. A. Kodentsov, G. F. Bastin and F. J. J. Van Loo J. Alloys Comp. 320 (2001) 207.Google Scholar
  24. 24.
    E. Lifshin, private communication, 2002.Google Scholar
  25. 25.
    C. R. Hunt and A. Raman Z. Metallkde. 59 (1968) 701.Google Scholar
  26. 26.
    K. Mahdouk and J. C. Gachon J. Alloys Comp. 321 (2001) 232.Google Scholar
  27. 27.
    J.-C. Zhao, M. R. Jackson and L. A. Peluso J. Phase Equil. Diff. 25 (2004) 152.Google Scholar
  28. 28.
    H. J. Goldschmidt and J. A. Brand J. Less-Comm. Met. 3 (1961) 34.Google Scholar
  29. 29.
    J.-C. Zhao, M. R. Jackson and L. A. Peluso Acta Mater. 51 (2003) 6395.Google Scholar
  30. 30.
    B. P. Bewlay, R. R. Bishop and M. R. Jackson Z. Metallkde. 90 (1999) 413.Google Scholar
  31. 31.
    J.-C. Zhao, B. P. Bewlay and M. R. Jackson Intermetallics 9 (2001) 681.Google Scholar
  32. 32.
    M. E. Schlesinger, H. Okamoto, A. B. Gokhale and R. Abbaschian J. Phase Equil. 14 (1993) 502.Google Scholar
  33. 33.
    Y. A. Chang Trans AIME 242 (1968) 1509.Google Scholar
  34. 34.
    A. J. Schwartz, M. Kumar and B. L. Adams, “Electron Backscatter Diffraction in Materials Science” (Kluwer Academic/Plenum Publishers, New York, 2000).Google Scholar
  35. 35.
    F. J. J. Van Loo and G. D. Rieck Acta Metall. 21 (1973) 61.Google Scholar
  36. 36.
    J.-C. Zhao, M. R. Jackson and L. A. Peluso Mater. Sci. Eng. A. 372 (2004) 21.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J.-C. Zhao
    • 1
  1. 1.General Electric Company, GE Global ResearchSchenectadyUSA

Personalised recommendations