Journal of Materials Science

, Volume 39, Issue 10, pp 3309–3318 | Cite as

Synthesis of HDLC films from solid carbon

  • R. L. Mills
  • J. Sankar
  • P. Ray
  • A. Voigt
  • J. He
  • B. Dhandapani


Diamond-like carbon (DLC) films were synthesized on silicon substrates from solid carbon by a very low power (∼60 W) microwave plasma chemical vapor deposition (MPCVD) reaction of a mixture of 90–70% helium and 10–30% hydrogen. It is proposed that He+ served as a catalyst with atomic hydrogen to form an energetic plasma. The average hydrogen atom temperature of a helium-hydrogen plasma was measured to be up to 180–210 eV versus ≈3 eV for pure hydrogen. Bombardment of the carbon surface by highly energetic hydrogen formed by the catalysis reaction may play a role in the formation of DLC. The films were characterized by time of flight secondary ion mass spectroscopy (ToF-SIMS), X-ray photoelectron spectroscopy (XPS), and Raman spectroscopy. TOF-SIMS identified the coatings as hydride by the large H+ peak in the positive spectrum and the dominant H in the negative spectrum. The XPS identification of the H content of the CH coatings as a novel hydride corresponding to a peak at 49 eV has implications that the mechanism of the DLC formation may also involve one or both of selective etching of graphitic carbon and the stabilization of sp3-bonded carbon by the hydrogen catalysis product. Thus, a novel H intermediate formed by the plasma catalysis reaction may enhance the stabilization and etching role of H used in past methods.


Hydride Solid Carbon Selective Etching Atom Temperature Negative Spectrum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Seth, M. I. Chaudhry and S. V. Babu J. Vac. Sci. Technol. 10 (1992) 3125.Google Scholar
  2. 2.
    G. F. Zhang and X. Zheng Surf. Coat. Technol. 82 (1996) 110.Google Scholar
  3. 3.
    J. Robertson Diamond Relat. Mater. 1 (1992) 397.Google Scholar
  4. 4.
    S. Aiesenberg and F. M. Kimock Mater. Sci. Forum 52/53 (1989) 1.Google Scholar
  5. 5.
    I. R. Mccoll, T. L. Parker and A. A. Goruppa Diamond Relat. Mater. 3 (1993) 83.Google Scholar
  6. 6.
    K. Zolynski, P. Witkowski, A. Kaluzny, Z. Has, P. Niedzielski and S. Mitura J. Chem. Vapor Dep. 4 (1996) 232.Google Scholar
  7. 7.
    D. R. Mckenzie Rep. Prog. Phys. 59 (1996) 1611.Google Scholar
  8. 8.
    J. Deng and M. Braun Diamond Relat. Mater. 4 (1995) 936.Google Scholar
  9. 9.
    J. Ishikawa, K. Ogawa, K. Miyata and T. Takagi Nucl. Instrum. Methods B 21 (1987) 205.Google Scholar
  10. 10.
    F. Rossi and B. Andre, in Proc. IP AT 1991, Brussels, CEP Consultants, Edinburgh, UK (1991) p. 43.Google Scholar
  11. 11.
    S. Prawer K. W. Nugent, Y. Lifshitz, G. D. Lempert, E. Grossman, J. Kulik, I. Avigal and R. Kalish Diamond Relat. Mater. 5 (1996) 433.Google Scholar
  12. 12.
    Q. Wei and J. Narayan Int. Mater. Rev. 45(3) (2000) 133.Google Scholar
  13. 13.
    S. Aisenberg and R. Chabot J. Appl. Phys. 42 (1971) 2953.Google Scholar
  14. 14.
    A. M. Jones, C. J. Bedell, G. Dearnaley, C. Johnston and J. M. Owens Diamond Relat. Mater. 1 (1992) 416.Google Scholar
  15. 15.
    D. Nir, R. Kalish and G. Levin Thin Solid Films 117 (1985) 125.Google Scholar
  16. 16.
    A. Grill, B. Meyerson, V. Patel, J. Reimer and M. Petrich J. Appl. Phys. 61 (1987) 2874.Google Scholar
  17. 17.
    W. J. Wu and M. H. Hon Thin Solid Films 307 (1997) 1.Google Scholar
  18. 18.
    O. Matsumoto, H. Toshima and Y. Kanzaki ibid. 128 (1985) 341.Google Scholar
  19. 19.
    B. H. Lung, M. J. Chiang and M. H. Hon ibid. 392 (2001) 16.Google Scholar
  20. 20.
    I. G. Brown Ann. Rev. Mater. Sci. 28 (1998) 243.Google Scholar
  21. 21.
    S. Neuville and A. Matthews MRS Bull. 22(9) (1997) 22.Google Scholar
  22. 22.
    S. Xu, B. K. Tay, H. S. Tan, L. Zhong, Y. Q. Tu, S. R. P. Silva and W. I. Milne J. Appl. Phys. 79 (1996) 7243.Google Scholar
  23. 23.
    N. Savvides and B. Window J. Vac. Sci. Technol. A 3 (1985) 2386.Google Scholar
  24. 24.
    J. Kulik, Y. Lifshitz, G. D. Lempert, J. W. Rabalais and D. Marton J. Appl. Phys. 76 (1994) 5063.Google Scholar
  25. 25.
    J. Krishnaswamy, A. Rengan, J. Narayan, K. Vedam and C. J. McHargue Appl. Phys. Lett. 54 (1989) 2455.Google Scholar
  26. 26.
    R. L. Mills, P. Ray, B. Dhandapani, R. M. Mayo and J. He J. Appl. Phys. 92 (2002) 7008.Google Scholar
  27. 27.
    R. L. Mills, P. Ray, B. Dhandapani, M. Nansteel, X. Chen and J. He J Mol. Struct. 643(1–3) (2002) 43.Google Scholar
  28. 28.
    R. L. Mills and P. Ray J. Phys. D 36 (2003) 1535.Google Scholar
  29. 29.
    R. L. Mills, J. He, P. Ray, B. Dhandapani and X. Chen Int. J. Hydrogen Energy. 28(12) (2003) 1401.Google Scholar
  30. 30.
    J. Tadic, I. Juranic and G. K. Moortgat J. Photochem. Photobiol. A 143 (2000) 169.Google Scholar
  31. 31.
    F. F. Chen, “Electric Probes,” in “Plasma Diagnostic Techniques,” edited by R. H. Huddleston and S. L. Leonard (Academic Press, NY, 1965).Google Scholar
  32. 32.
    Provided by A. Miller, Zettlemoyer Center for Surface Studies, Sinclair Laboratory, Lehigh University, Bethlehem, PA.Google Scholar
  33. 33.
    C. D. Wagner, W. M. Riggs, L. E. Davis, J. F. Moulder and G. E. Mulilenberg (eds.), in “Handbook of X-ray Photoelectron Spectroscopy” (Perkin-Elmer Corp., Eden Prairie, MN, 1997).Google Scholar
  34. 34.
    R. L. Mills and P. Ray Int. J. Hydrogen Energy 28 (2003) 825.Google Scholar
  35. 35.
    R. Mills, B. Dhandapani, M. Nansteel, J. He, T. Shannon and A. Echezuria ibid. 26 (2001) 339.Google Scholar
  36. 36.
    R. Mills, P. Ray, B. Dhandapani, W. Good, P. Jansson, M. Nansteel, J. He and A. Voigt Eur. Phys. J., Appl. Phys., submitted.Google Scholar
  37. 37.
    I. R. Videnovic, N. Konjevic and M. M. Kuraica Spectrochim. Acta, Part B 51 (1996) 1707.Google Scholar
  38. 38.
    S. Alexiou and E. Leboucher-Dalimier Phys. Rev. E 60 (1999) 3436.Google Scholar
  39. 39.
    S. Djurovic and J. R. Roberts J. Appl. Phys. 74 (1993) 6558.Google Scholar
  40. 40.
    S. B. Radovanov, K. Dzierzega, J. R. Roberts and J. K. Olthoff Appl. Phys. Lett. 66 (1995) 2637.Google Scholar
  41. 41.
    C. Weissmantel, in “Thin Films from Free Atoms and Molecules,” edited by K. J. Klabunde (Academic Press, Inc., New York, 1985) p. 153.Google Scholar
  42. 42.
    A. Grill and B. Meyerson, in “Synthetic Diamond: Emerging CVD Science and Technology,” edited by K. E. Spear and J. P. Dismukes (John Wiley & Sons, Inc., New York, 1994) p. 91.Google Scholar
  43. 43.
    Y. Lifshitz, Th. KÖhler, Th. Frauenheim, I. Guzmann, A. Hoffman, R. Q. Zhang, X. T. Zhou and S. T. Lee Science 297 (2002) 1531.Google Scholar
  44. 44.
    R. L. Mills, J. Sankar, A. Voigt, J. He and B. Dhandapani Chem. Mater. 15 (2003) 1313.Google Scholar
  45. 45.
    P. W. May Phil. Trans. R. Soc. Lond. A 358 (2000) 473.Google Scholar
  46. 46.
    R. Mills, B. Dhandapani, M. Nansteel, J. He and A. Voigt Int. J. Hydrogen Energy 26 (2001) 965.Google Scholar
  47. 47.
    K. Kim, G. Hong, D. Won, B. Kim, H. Moon and D. Suhr J. Mater. Res. 7 (1992) 2349.Google Scholar
  48. 48.
    M. C. Martin, G. Shirane, Y. Endoh, K. Hirota, Y. Moritomo and Y. Tokura Phys. Rev. B 53 (1996) 14,285.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • R. L. Mills
    • 1
  • J. Sankar
    • 1
  • P. Ray
    • 1
  • A. Voigt
    • 1
  • J. He
    • 1
  • B. Dhandapani
    • 1
  1. 1.BlackLight Power, Inc.CranburyUSA

Personalised recommendations