Journal of Materials Science

, Volume 39, Issue 9, pp 3003–3013

Nano-sized beads and porous fiber constructs of Poly(ε-caprolactone) produced by electrospinning



Nano-sized beads and non-woven porous fiber constructs of poly(ε-caprolactone) were produced by electrospinning. Nearly spherical beads with diameters between 900 nm and 5 μm were produced with dilute solutions with less than 3 wt% PCL. In this case, the initial jet of solution may split into many mini jets almost at the end of the needle and each minijet gradually disintegrates into small droplets. Beyond a critical solution concentration of about 4 wt% PCL, the jet may undergo extensional flow, splitting and splaying to produce a web of interconnected fibers with mean diameters on the order of 300 to 900 nm. Intermolecular entanglements play a dominant role in stabilizing the fibrous structure. A uniform fibrous structure was obtained at 40 kV while at 20 kV a large fraction of beads were present in the electrospun polymer. The fiber diameter in the PCL deposited on the collector typically exhibits a bimodal distribution. Electrospinning lowers the degree of crystallinity in the polymer.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. Hentze and M. Antonietti, Rev. Mol. Biotechn. 90 (2002) 27.Google Scholar
  2. 2.
    O. Pillai and R. Panchagnula, Curr. Opin. Chem. Biol. 5 (2001) 447.Google Scholar
  3. 3.
    A. S. Hoffman, Adv. Drug. Deliv. Rev. 54(1) (2002) 3.Google Scholar
  4. 4.
    E. Kenawy, J. M. Layman, J. R. Watkins, G. L. Bowlin, J. A. Matthews, D. G. Simpson and G. E. Wnek, Biomaterials 24 (2003) 907.Google Scholar
  5. 5.
    P. Gibson, H. Schreuder-Gibson and D. Rivin, Coll. Surf. A: Physicochem. Engng. Asp. 187/188 (2001) 469.Google Scholar
  6. 6.
    Y. K. Luu, K. Kim, B. S. Hsiao, B. Chu and M. Hadjiargyrou, J. Contr. Rel. 89 (2003) 341.Google Scholar
  7. 7.
    Z. Huang, Y. Zhang, M. Kotaki and S. Ramakrishna, Comp. Sci. Techn. (2003) in press.Google Scholar
  8. 8.
    J. M. Deitzel, J. D. Kleinmeyer, J. K. Hirvonen and N. C. Beck Tan, Polymer 42 (2001) 8163.Google Scholar
  9. 9.
    K. Ohgo, C. Zhao, M. Kobayashi and T. Asakura, ibid. 44 (2003) 841.Google Scholar
  10. 10.
    A. Koski, K. Yim and S. Shivkumar, Mater. Lett. (2003) in press.Google Scholar
  11. 11.
    Chen-Ming Hsu, “Electrospinning of Poly(ε-Caprolactone)” M.S. thesis, Worcester Polytechnic Institute, Worcester, MA. 2003.Google Scholar
  12. 12.
    K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra and D. R. Lee, Polymer 44 (2003) 1287.Google Scholar
  13. 13.
    H. Fong, I. Chun and D. H. Reneker, ibid. 43 (1999) 4585.Google Scholar
  14. 14.
    R. P. Mun, J. A. Byars and D. V. Boger, J. Non-Newton. Fluid Mech. 74 (1998) 285.Google Scholar
  15. 15.
    B. Ku and S. Kim, Aerosol Sci. 33 (2002) 1361.Google Scholar
  16. 16.
    Joel R. Fried, “Polymer Science and Technology” (Prentice Hall, Englewood Cliffs, NJ, 1995).Google Scholar
  17. 17.
    C. Pitt, M. Gratzl, G. Kimmel, J. Surles and A. Schindler, Biomaterials 2 (1981) 215.Google Scholar
  18. 18.
    P. Hong, C. Chou and C. He, Polymer 42 (2001) 6105.Google Scholar
  19. 19.
    M. M. Demira, I. Yilgorb, E. Yilgorb and B. Erman, ibid. 43 (2002) 3303.Google Scholar
  20. 20.
    J. Deitzel, J. Kleinmeyer, D. Harris and N. C. Beck Tan, ibid. 42 (2001) 261.Google Scholar
  21. 21.
    G. Taylor, Proc. Roy. Soc. London A 313 (1969) 453.Google Scholar
  22. 22.
    H. Fong and D. H. Reneker, J. Polym. Sci.: Part B: Polym. Phys. 37 (1999) 3488.Google Scholar
  23. 23.
    G. Maglio, A. Migliozzi and R. Palumbo, Polymer 44 (2003) 369.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Department of Mechanical EngineeringWorcester Polytechnic InstituteWorcesterUSA

Personalised recommendations