Journal of Materials Science

, Volume 39, Issue 8, pp 2835–2839 | Cite as

Optical properties of SiO2-TiO2 sol-gel thin films

  • P. Chrysicopoulou
  • D. Davazoglou
  • C. Trapalis
  • G. Kordas


The optical properties of thin SiO2-TiO2 sol-gel composite films were investigated using exact optical models and the Forouhi-Bloomer model, (Phys. Rev. B34, 7018 (1986)), which describes the optical dispersion of amorphous dielectrics. Films deposited on glass and silicon substrates, were characterized by optical transmission and reflection measurements. Theoretical spectra have been generated and fitted to the experimental ones via standard regression analysis techniques. The (five) adjustable Forouhi-Bloomer parameters describing the dispersion of the complex refractive index, as well as the film thickness were determined. The refractive index and absorption coefficient of the films were found to depend on the molar contents of the component oxides.


Silicon Refractive Index Regression Analysis Optical Property Film Thickness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    H. K. Pulker, “Coatings on Glass” (Elsevier Amsterdam-Oxford-New York-Tokyo, 1984).Google Scholar
  2. 2.
    J. Rancourt, “Optical Thin Films-User's Handbook” (MacGraw Hill, New York, 1987).Google Scholar
  3. 3.
    J. Augustynski, “Aspects of Photo-Electrochemical and Surface Behaviour of Titanium (IV) Oxide” (Springer-Verlag, Berlin, 1988).Google Scholar
  4. 4.
    M. Fleisher and H. Meixner Sensors Actuators B 4 (1991) 437.Google Scholar
  5. 5.
    C. J. Brinker and G. W. Scherer, “The Physics and Chemistry of Sol-Gel Processing” (Academic Press, Inc., New York, 1990).Google Scholar
  6. 6.
    H. D. Gesser and P. C. Goswami Chem. Rev. 89 (1989) 765.Google Scholar
  7. 7.
    D. Gallagher and T. A. Ring Chimia 43 (1989) 298.Google Scholar
  8. 8.
    D. Y. Jeng and M. N. Rahaman J. Mater. Sci. 28 (1993) 4964.Google Scholar
  9. 9.
    K. Kamiya and S. Sakka J. Non-Cryst. Solids 52 (1982) 357.Google Scholar
  10. 10.
    T. Hanada, T. Aikawa and N. Soga J. Amer. Ceram. Soc. 67 (1984) 52.Google Scholar
  11. 11.
    H. Dislich and E. Hussman Thin Solid Films 77 (1981) 129.Google Scholar
  12. 12.
    M. Anpo, H. Nakaya, S. Kodama, Y. Kubokawa, K. Domen and T. Onishi J. Phys. Chem. 90 (1986) 1633.Google Scholar
  13. 13.
    K. Tanabe, T. Sumiyoshi, K. Shibata, T. Kiyoura and J. Kitagawa Bull. Chem. Soc. Jpn. 47 (1974) 1064.Google Scholar
  14. 14.
    M. Itoh, H. Hattori and K. Tanabe J. Catalysis 35 (1974) 225.Google Scholar
  15. 15.
    A. Matsuda, Y. Matsuno, S. Katayama, T. Tsuno, N. Tohge and T. Minami J. Ceram. Soc. Jpn. (Int. Edition) 100(9) (1992) 1094.Google Scholar
  16. 16.
    A. Forouhi and I. Bloomer Phys. Rev. B 34 (1986) 7018.Google Scholar
  17. 17.
    C. C. Trapalis, V. S. Kozhukharov, B. I. Samuneva and P. Stefanov J. Mater. Sci. 28 (1993) 1276.Google Scholar
  18. 18.
    Xin Min Du and R. M. Almeida J. Sol-Gel Sci. Technol. 8 (1997) 377.Google Scholar
  19. 19.
    L. Weisenbach, T. L. Davis, B. J. J. Zelinski, R. L. Roncone and L. A. Weller-Brophy Mater. Res. Soc. 180 (1990) 377.Google Scholar
  20. 20.
    D. E. Aspnes “Properties of Silicon,” INSPEC (The Institute of Electrical Engineers EMIS Datareview RN, 1988) p. 72.Google Scholar
  21. 21.
    I. J. Malitson J. Opt. Soc. Amer. 55 (1965) 1205.Google Scholar
  22. 22.
    O. S. Heavens, “Optical Properties of Thin Solid Films” (Dover Publications Inc., New York, 1965).Google Scholar
  23. 23.
    R. Pettit, C. S. Ashley, S. T. Reed and C. J. Brinker, in “Sol-Gel Technology for Thin Films, Fibers, Performs, Electronics and Specialty Shapes,” edited by L. C. Klein (Noyes Publications, USA, 1988).Google Scholar
  24. 24.
    P. Chrysicopoulou, D. Davazoglou, C. Trapalis and G. Kordas Thin Solid Films 323 (1998) 188.Google Scholar
  25. 25.
    D. Davazoglou Appl. Phys. Lett. 70 (1997) 1.Google Scholar
  26. 26.
    D. Davazoglou Thin Solid Films 302 (1997) 204.Google Scholar
  27. 27.
    J. Petalas and S. Logothetidis Phys. Rev. B 50 (1994) 11801.Google Scholar
  28. 28.
    D. Davazoglou and A. Iliadis, in “Material Ordering, Composition, Modulation and Self-Assembled Structures,” edited by D. Jones, A. Muscarhenas, P. Petroff and R. Bhat (ISBN I-55899-320-7, 1996) vol. 417.Google Scholar
  29. 29.
    N. F. Mott and E. Davis, “Electronic Processes in Non-Crystalline Materials” (Clarendon Press, Oxford, 1979).Google Scholar
  30. 30.
    D. Davazoglou, D. Kouvatsos and E. Valamontes, in “Chemical Vapor Deposition,” edited by M. D. Allendorf and C. Bernard (Electrochem. Soc. Proc., 1997) Vol. 97,No. 25, p. 796.Google Scholar
  31. 31.
    F. James, Function Minimization, in Proceedings of the 1972 CERN Computing and Data Processing School, Pertisau, Austria, 10–24 Sept. 1972.Google Scholar
  32. 32.
    H. R. Philipp, “Properties of Silicon,” INSPEC (The Institute of Electrical Engineers, 1987) p. 1015.Google Scholar
  33. 33.
    S. M. Melpolder, A. W. West, C. L. Barnes and T. N. Blanton J. Mater. Sci. 26 (1991) 3585.Google Scholar
  34. 34.
    K. Bange, C. R. Otterman, O. Anderson, U. Jeschkowski, M. Laube and R. Feile Thin Solid Films 197 (1991) 279.Google Scholar
  35. 35.
    H. Demiryont Appl. Opt. 26(16) (1985) 2647.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • P. Chrysicopoulou
    • 1
  • D. Davazoglou
    • 2
  • C. Trapalis
    • 2
  • G. Kordas
    • 2
  1. 1.Department of Home Economics and EcologyHarokopio UniversityAthensGreece
  2. 2.NCSR “Demokritos,”Institute of MicroelectronicsAgia Paraskevi, AttikiGreece

Personalised recommendations