Journal of Materials Science

, Volume 39, Issue 8, pp 2783–2788

Generation of metal and metal oxide nanoparticles by liquid flame spray process

  • J. M. Mäkelä
  • H. Keskinen
  • T. Forsblom
  • J. Keskinen
Article

Abstract

A liquid flame spray (LFS) process has been investigated for the generation of single component nanoparticles. In the LFS process, a solution consisting of metal nitrate dissolved in water is sprayed into a turbulent, high temperature H2-O2-flame. The primary spray droplets evaporate and subsequent reactions in the flame produce metal or metal oxide vapours which nucleate to final particulate form. In the study, the process characteristics were examined to produce 10–60 nm particles from silver, palladium and iron containing precursors. A systematic study using variable process parameters proved that the size of the generated nanoparticles is set by the mass flow rate of the metal precursor, only. The geometric standard deviation of the size distributions was seen to vary in a limited range of 1.35–1.4. The particle size was verified by aerosol instrumentation, the composition and morphology by X-ray diffraction (XRD) and transmission electron microscopy (TEM), correspondingly. The Ag and Pd particles were seen to consist of pure metals. For iron, the presence of all three of the following compounds were detected: Fe, Fe2O3 and Fe3O4.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. S. Edelstein and R. C. Cammarata (eds.), “Nanomaterials: Synthesis, Properties and Applications” (Institute of Physics Publishing, Bristol, UK, 1996).Google Scholar
  2. 2.
    F. E. Kruis, H. Fissan and A. Peled J. Aerosol Sci. 29 (1998) 511.Google Scholar
  3. 3.
    T.T. Kodas and M.J. Hampden-Smith, “Aerosol Processing of Materials” (Wiley-VCH, New York, 1999).Google Scholar
  4. 4.
    A. Gurav, T. Kodas, T. Plyum and Y. Xiong Aerosol Sci. Technol. 19 (1993) 411.Google Scholar
  5. 5.
    D. J. Craik, “Magnetic Oxides” (John-Wiley & Sons, New York, 1975).Google Scholar
  6. 6.
    M. V. Cabanas, J. M. Conzalez-Calbet and M. Vallet-Regi Ceramics: Charting the Future. (1995) 1221.Google Scholar
  7. 7.
    J. Tikkanen, K. A. Gross, C. C. Berndt, V. PitkÄnen, J. Keskinen, S. Raghu, M. Rajala and J. Karthikeyan Surf. Coatings Technol. 90 (1997) 210.Google Scholar
  8. 8.
    K. A. Gross, J. Tikkanen, J. Keskinen, V. PitkÄnen, M. Eerola, R. SiikamÄki and M. Rajala J. Thermal Spray Technol. 8 (1999) 583.Google Scholar
  9. 9.
    J. Karthikeyan, C. C. Berndt, J. Tikkanen, S. Reddy and H. Herman Nanostruct. Mater. 8 (1997a) 61.Google Scholar
  10. 10.
    J. Karthikeyan, C. C. Berndt, J. Tikkanen, J. Y. Wang, A. H. King and H. Herman ibid. 9 (1997b) 137.Google Scholar
  11. 11.
    “CRC Handbook of Chemistry and Physics” 60th ed. (The Chemical Rubber Co., Cleveland, OH, 1979).Google Scholar
  12. 12.
    J. Tikkanen, M. Eerola, V. PitkÄnen and M. Rajala, “Method and Equipment for Spraying Material” Patent no. 98832-Finland (in Finnish), 1997.Google Scholar
  13. 13.
    W. Koch, H. LÖdding, W. MÖlter and F. Munzinger Staub-Reinhaltung der Luft 48 (1988) 341.Google Scholar
  14. 14.
    J. Keskinen, K. Pietarinen and M. LehtimÄki J. Aerosol Sci. 23 (1992) 353.Google Scholar
  15. 15.
    S. C. Wang and R. C. Flagan Aerosol Sci. Technol. 13 (1990) 230.Google Scholar
  16. 16.
    J. RistimÄki, A. Virtanen, M. MarjamÄki, A. Rostedt and J. Keskinen J. Aerosol Sci. 33 (2002) 1541.Google Scholar
  17. 17.
    Y.-S. Cheng, H.-C. Yeh and G. M. Kanapilly Amer. Ind. Hygiene Ass. 42 (1981) 605.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. M. Mäkelä
    • 1
  • H. Keskinen
    • 1
  • T. Forsblom
    • 1
  • J. Keskinen
    • 1
  1. 1.Aerosol Physics Laboratory, Institute of PhysicsTampere University of TechnologyTampereFinland

Personalised recommendations