Journal of Materials Science

, Volume 39, Issue 5, pp 1639–1646 | Cite as

Deposition of thermal barrier coatings using the solution precursor plasma spray process

  • Liangde Xie
  • Xinqing Ma
  • Eric H. Jordan
  • Nitin P. Padture
  • Danny T. Xiao
  • Maurice Gell

Abstract

The solution-precursor plasma-spray (SPPS) process is capable of producing highly durable thermal barrier coatings. In an effort to improve the understanding of the deposition mechanisms in this novel process, a series of specific experiments, where the substrate is held stationary and the plasma torch is programmed to scan a single pass across the substrate, were conducted and the resulting deposits were carefully characterized. In addition to the deposition mechanisms identified previously in the stationary torch experiments, the deposition mechanisms of two other types of deposits, thin film and fine spherical particles, were identified in this study. The melting of inflight formed 7YSZ particles and their rapid solidification to form ultra-fine splats on the substrate was found to be the dominant deposition mechanism. The characterization of actual SPPS coatings confirmed that the various coating-deposition mechanisms identified in the model experiments occur in concert during the actual coating process. Adherent deposits (ultra-fine splats, deposits from gel-like precursor and film formed via chemical vapor deposition), unmelted particles (spherical particles, deposits from non-decomposed precursor) and porosity were estimated to constitute ∼65, ∼19 and ∼16 vol%, of the coating, respectively.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    S. M. Meier and D. K. Gupta, J. Eng. Gas Turbines Power 116 (1994) 250.Google Scholar
  2. 2.
    S. Miller, Mater. World. 4 (1996) 446.Google Scholar
  3. 3.
    R. A. Miller, J. Therm. Spray Technol. 6 (1997) 35.Google Scholar
  4. 4.
    N. P. Padture, M. Gell and E. H. Jordan, Science 296 (2002) 280.Google Scholar
  5. 5.
    D. W. Parker, Mat. Des. 14 (1993) 345.Google Scholar
  6. 6.
    K. D. Harris, D. Vick, E. J. Gonzalez, T. Smy, K. Robbie and M. J. Brett, Surf. Coat. Technol. 138 (2001) 185.Google Scholar
  7. 7.
    D. D. Hass, A. J. Slifka and H. N. G. Wadley, Acta Mater. 49 (2001) 973.Google Scholar
  8. 8.
    N. P. Padture, K. W. Schlichting, T. Bhatia, A. Ozturk, B. Cetegen, E. H. Jordan, M. Gell, S. Jiang, T. D. Xiao, P. R. Strutt, E. Garcia, P. Miranzo and M. I. Osendi, ibid. 49 (2001) 2251.Google Scholar
  9. 9.
    J. D. Vyas and K. L. Choy, Mater. Sci. Eng. A 277 (2000) 206.Google Scholar
  10. 10.
    B. Preauchat and S. Drawin, Surf. Coat. Technol. 142–144 (2001) 835.Google Scholar
  11. 11.
    M. Gell, L. Xie, X. Ma, E. H. Jordan and N. P. Padture, ibid. (2003) in press.Google Scholar
  12. 12.
    L. Xie, X. Ma, A. Ozturk, E. H. Jordan, N. P. Padture, B. Cetergen, D. Xiao and M. Gell, Submitted to Surf. Coat. Technol., in press.Google Scholar
  13. 13.
    L. Xie, X. Ma, E. H. Jordan, N. P. Padture, D. Xiao and M. Gell, Mater. Sci. Eng. A 362 (2003) 204.Google Scholar
  14. 14.
    T. Bhatia, A. Ozturk, L. Xie, E. H. Jordan, B. M. Cetegen, M. Gell, X. Ma and N. P. Padture, J. Mater. Res. 17 (2002) 2363.Google Scholar
  15. 15.
    S. Sampath, X. Y. Jiang, J. Matejicek, A. C. Leger and A. Vardelle, Mater. Sci. Eng. A 272 (1999) 181.Google Scholar
  16. 16.
    M. Vardelle, A. Vardelle, A. C. Leger, P. Fauchais and D. Gobin, J. Therm. Spray Technol. 4 (1995) 50.Google Scholar
  17. 17.
    K. L. Choy, Mater. Sci. Eng. C 16 (2001) 139.Google Scholar
  18. 18.
    S. Semenov and B. Cetegen, J. Therm. Spray Technol. 10 (2000) 326.Google Scholar
  19. 19.
    N. Yamaguchi, T. Hattori, K. Terashima and T. Yoshida, Thin Solid Films 316 (1998) 185.Google Scholar
  20. 20.
    H. Zhu, Y. C. Lau and E. Pfender, J. Appl. Phys. 69 (1991) 3404.Google Scholar
  21. 21.
    K. L. Choy, Progress in Mater. Sci. 48 (2003) 57.Google Scholar
  22. 22.
    I. Ahmed and T. L. Bergman, J. Thermal Spray Technol. 9 (2000) 215.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Liangde Xie
    • 1
  • Xinqing Ma
    • 2
  • Eric H. Jordan
    • 3
  • Nitin P. Padture
    • 4
  • Danny T. Xiao
    • 2
  • Maurice Gell
    • 4
  1. 1.Department of Metallurgy and Materials Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Inframat CorporationFarmingtonUSA
  3. 3.Department of Mechanical Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  4. 4.Department of Metallurgy and Materials Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA

Personalised recommendations