Journal of Materials Science

, Volume 39, Issue 5, pp 1635–1638 | Cite as

Bio-composites produced from plant microfiber bundles with a nanometer unit web-like network

  • H. Yano
  • S. Nakahara
Article

Abstract

Using plant microfiber bundles with a nanometer unit web-like network, a moulded product with a bending strength of 250 MPa was obtained without the use of binders. High interactive forces seem to be developed between pulp fibers owing to their nanometer unit web-like network. In other words, the area of possible contact points per fiber are increased, so that more hydrogen bonds might be formed or van der Waals forces increased. When 2% oxidized tapioca starch, by weight, was added, the yield strain doubled and the bending strength reached 310 MPa. The starch mixed moulded product had a similar stress strain curve to that for magnesium alloy, and three to four times higher Young's modulus and bending strength values than polycarbonate and GFRP (chopped). The mouldings have a combination of environmentally friendly and high strength properties.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Fengel and G. Wegener, in “WOOD—Chemistry Ultrastructure Reactions” (Walter de Gruyter, Belrin, New York, 1983) p. 93.Google Scholar
  2. 2.
    I. Sakurada, Y. Nukushima and T. Ito, J. Polym. Sci. 57 (1962) 651.Google Scholar
  3. 3.
    D. H. Page and F. El-Hosseiny, J. Pulp Pap. Sci. 9 (1983) 99.Google Scholar
  4. 4.
    L. H. Sperling, “Introduction to Physical Polymer Science” (John Wiley & Sons Inc., New York, 2001) p.499.Google Scholar
  5. 5.
    L. Lundquist, B. Marque, P. O. Hagstrand, Y. Leterrier and J.-A. E. Manson, Compos. Sci. Technol. 63 (2003) 137.Google Scholar
  6. 6.
    T. G. Rials, M. P. Wolcott and J. M. Nassar, J. Appl. Polym. Sci. 80 (2001) 546.Google Scholar
  7. 7.
    M. A. Svoboda, R. W. Lang, R. Bramsteidl, M. Ernegg and W. Stadlbauer, Mol. Cryst. Liq. Cryst. 47 (2000) 353.Google Scholar
  8. 8.
    X. Y. Chen, Q. P. Guo and Y. L. Mi, J. Appl. Polym. Sci. 69 (1998)1891.Google Scholar
  9. 9.
    J. Simonsen, Forest Prod. J. 47 (1997) 74.Google Scholar
  10. 10.
    O. Y. Mansour, S. Kamel and M. A. Nassar, J. Appl. Polym. Sci. 69 (1998) 845.Google Scholar
  11. 11.
    M. Wollerdorfer and H. Bader, Ind. Crop. Prod. 8 (1998) 105.Google Scholar
  12. 12.
    D. G. Hepworth, J. F. V. Vincent, G. Jeronimidis and D. M. Bruce, Compos. Part A-Appl. S. 31 (2000) 599.Google Scholar
  13. 13.
    F. W. Herrick, R. L. Casebier, J. K. Hamilton and K. R. Sandberg, J. Appl. Polym. Sci.: Appl. Polym. Symp. 37 (1983) 797.Google Scholar
  14. 14.
    T. Taniguchi and K. Okamura, Polym. Int. 47 (1998) 291.Google Scholar
  15. 15.
    Y. Matsuda, Sen-i Gakkaishi 56 (2000) 192.Google Scholar
  16. 16.
    S. Yamanaka, K. Watanabe, N. Kitamura, M. Iguchi, S. Mitsuhashi, Y. Nishi and M. Uryu, J. Mater. Sci. 24 (1989) 3141.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Yano
    • 1
  • S. Nakahara
    • 1
  1. 1.Wood Research InstituteKyoto UniversityGokasyo, UjiJapan

Personalised recommendations