Journal of Materials Science

, Volume 39, Issue 5, pp 1621–1634 | Cite as

An analytical model for isothermal and isochronal transformation kinetics

  • F. Liu
  • F. SommerEmail author
  • E. J. Mittemeijer


An analytical model for the kinetics of phase transformations has been discussed that combines three overlapping processes: nucleation, growth, and impingement. Two kinds of nucleation have been considered in particular: a mixture of site saturation and continuous nucleation and Avrami nucleation. In combination with either interface-controlled growth or volume diffusion controlled growth, and incorporating the effect of impingement of the growing particles, a general analytical description of the transformation kinetics has been given for both isothermally and isochronally conducted transformations. The corresponding kinetic parameters are time and temperature dependent. In specific, limiting cases, the model reduces to the so-called Johnson-Mehl-Avrami description of transformation kinetics. The analytical model has been verified by exact results obtained from numerical calculations. The influences of the different nucleation and growth modes on the time and temperature dependencies of the transformation rate and the kinetic parameters have been demonstrated.


Polymer Phase Transformation Numerical Calculation Kinetic Parameter Analytical Description 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. A. Johnson and R. F. Mehl, Trans. Amer. Inst. Min. (Metall.) Engs. 135 (1939) 1.Google Scholar
  2. 2.
    M. Avrami, J. Chem. Phys. 7 (1939) 1109; 8 (1940) 212; 9 (1941) 177.Google Scholar
  3. 3.
    Idem., ibid. 8 (1940) 212.Google Scholar
  4. 4.
    Idem., ibid. 9 (1941) 177.Google Scholar
  5. 5.
    A. N. Kolgomorov, Izv. Akad. Nauk. SSSR, Ser. Fiz. 3 (1937) 355.Google Scholar
  6. 6.
    J. W. Christian, “The Theory of Transfomation in Metals and Alloys, Part 1 Equilibrium and General Kinetics Theory” (Pergamon Press, Oxford, 1975).Google Scholar
  7. 7.
    E. J. Mittemeijer, J. Mater. Sci. 27 (1992) 3977.Google Scholar
  8. 8.
    A. T. W. Kempen, F. Sommer and E. J. Mittemeijer, J. Mater. Sci. 37 (2002) 1321.Google Scholar
  9. 9.
    E. J. Mittemeijer and F. Sommer, Z. Metallkd. 93 (2002) 5.Google Scholar
  10. 10.
    A. T. W. Kempen, F. Sommer and E. J. Mittemeijer, Acta Mater. 50 (2002) 1319.Google Scholar
  11. 11.
    G. Ghosh, M. Chandrasekaran and L. Delaey, ibid. 39 (1991) 925.Google Scholar
  12. 12.
    H. Nitsche, F. Sommer and E. J. Mittemeijer (2003) submitted for publication.Google Scholar
  13. 13.
    A. Calka and A. P. Radlinski, Acta Mater. 35 (1987) 1823.Google Scholar
  14. 14.
    M. Abramowitz and I. A. Stegun, “Handbook of Mathematical Functions” (Dover Publications, New York, 1968).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.Max Planck Institute for Metals ResearchStuttgartGermany

Personalised recommendations