Journal of Materials Science

, Volume 39, Issue 3, pp 993–996 | Cite as

Third-order optical nonlinearity and figure of merit of CdS nanocrystals chemically stabilized in spin-processable polymeric films

  • Y. Lin
  • J. Zhang
  • E. Kumacheva
  • E. H. Sargent
Article

Abstract

We report figure of merit for sub-picosecond nonlinearity at 815 nm for nanocrystals of CdS dispersed in poly(methyl methacrylate) (PMMA). CdS nanocrystals were successfully transferred from the aqueous to the organic phase and stabilized in PMMA films using a new chemical route. We report a nonlinear Kerr coefficient n2 of −(8.4 ± 0.4) × 10−14 cm2/W, and a one-photon figure of merit W = 1.2 for 3 wt% CdS-doped PMMA film. The results suggest the combined processibility and promising optical properties of such materials for use in transmission-mode optical switching and limiting devices based on ultrafast nonlinearity.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. G. Bawendi, W. L. Wilson, L. Rothberg, P. J. Carroll, T. M. Jedju, M. L. Steigerwald and L. E. Brus, Phys. Rev. Lett. 65 (1990) 1623.PubMedGoogle Scholar
  2. 2.
    K. Kang, A. D. Kepner, Y. Z. Hu, S. W. Koch, N. Peyghambarian, C. Li, T. Takada, Y. Kao and J. D. Mackenzie, Appl. Phys. Lett. 64 (1994) 1487.Google Scholar
  3. 3.
    A. P. Alivisatos, J. Phys. Chem. 100 (1996) 13227.Google Scholar
  4. 4.
    D. V. Talapin, A. L. Rogach, A. Kornowski, M. Haase and H. Weller, Nano Lett. 1 (2001) 207.Google Scholar
  5. 5.
    H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, D. E. Fogg, R. R. Schrock, E. L. Thomas, M. F. Rubner and M. G. Bawendi, J. Appl. Phys. 86 (1999) 4390.Google Scholar
  6. 6.
    G. P. Banfi and D. Vittorio, Adv. Phys. 47 (1998) 447.Google Scholar
  7. 7.
    L. L. Beecroft and C. K. Ober, Chem. Mater. 9 (1997) 1302.Google Scholar
  8. 8.
    M. C. Schlamp, X. Peng and A. P. Alivisatos, J. Appl. Phys. 82 (1997) 5837.Google Scholar
  9. 9.
    T. D. Krauss and F. W. Wise, Appl. Phys. Lett. 65 (1994) 1739.Google Scholar
  10. 10.
    D. Cotter, M. G. Burt and R. J. Manning, Phys. Rev. Lett. 68 (1992) 1200.PubMedGoogle Scholar
  11. 11.
    M. Y. Han, L. M. Gan, W. Huang, C. H. Chew, B. S. Zou, C. H. Quek, G. Q. Xu, W. Ji, X. J. Zhang and S. C. Ng, Talanta 45 (1998) 735; M. Y. Han, W. Huang, C. H. Chew, L. M. Gan, W. Ji and X. J. Zhang, J. Phys. Chem. B 102 (1998) 1884.Google Scholar
  12. 12.
    R. E. Schwerzel, K. B. Spahr, J. P. Kurmer, V. E. Wood and J. A. Jenkins, ibid. A 102 (1998) 5622.Google Scholar
  13. 13.
    A. Shik, H. Ruda and E. H. Sargent, J. Appl. Phys. 88 (2000) 3448.Google Scholar
  14. 14.
    S. M. Jensen, IEEE J. Quantum Elect. 18 (1982) 1580.Google Scholar
  15. 15.
    H.-B. Lin, R. J. Tonucci and A. J. Campillo, Opt. Lett. 23 (1998) 94.Google Scholar
  16. 16.
    G. I. Stegeman, “Nonlinear Optical Properties of Advanced Materials” vol. 1852 (SPIE, 1993) p. 75.Google Scholar
  17. 17.
    A. L. Rogach, L. Katsikas, A. Kornowski, D. Su, A. Eychmuller and H. Weller, Ber. Bunsen-Ges. Phys. Chem. 100 (1996) 1772.Google Scholar
  18. 18.
    M. Gao, S. Kirstein, H. Mohwald, A. Rogach, A. Kornowski, A. EychmÜller and H. Weller, J. Phys. Chem. B 102 (1998) 8360.Google Scholar
  19. 19.
    L. Andrey, A. Rogach, A. Kornowski, M. Gao, A. Eychmuller and H. Weller, ibid. 103 (1999) 3065.Google Scholar
  20. 20.
    T. Vossmeyer, L. Katsikas, M. Giersig, I. G. Popovic, K. Diesner, A. Chemseddine, A. Eychmuller and H. Weller, ibid. 98 (1994) 7665.Google Scholar
  21. 21.
    E. Hao, L. Wang, J. Zhang, B. Yang, Z. Xi and J. Shen, Chem. Lett. 1 (1999) 5.Google Scholar
  22. 22.
    G. Carotenuto, X. Xuejun and L. Nicolais, Polymer News 25 (2000) 6.Google Scholar
  23. 23.
    A. Henglein, Chem. Rev. 89 (1989) 1861.Google Scholar
  24. 24.
    L. Spanhel, M. Haase, H. Weller and A. Henglein, J. Amer. Chem. Soc. 109 (1987) 5649.Google Scholar
  25. 25.
    M. G. Bawendi, P. J. Carroll, W. L. Wilson and L. E. Brus, J. Phys. Chem. 96 (1992) 946.Google Scholar
  26. 26.
    J. Butty, Y. Z. Hu, N. Peyghambarian, Y. H. Kao and J. D. Mackenzie, Appl. Phys. Lett. 67 (1995) 2672; J. Butty, N. Peyghambarian, Y. H. Kao and J. D. Mackenzie, ibid. 69 (1996) 3224.Google Scholar
  27. 27.
    N. Herron, Y. Wang, M. M. Eddy, G. D. Stucky, D. E. Cox, K. Moller and T. Bein, J. Amer. Chem. Soc. 111 (1989) 530.Google Scholar
  28. 28.
    M. Sheik-Bahae, A. A. Said, T. Wei, D. J. Hagan and E. W. Van Stryland, IEEE J. Quantum Electron. 26 (1990) 760.Google Scholar
  29. 29.
    D. Pelinovsky, L. Brzozowski and E. H. Sargent, Phys. Rev. E 62 (2000) R4536.Google Scholar
  30. 30.
    L. Brzozowski and E. H. Sargent, J. Opt. Soc. Amer. B 17 (2000) 1360.Google Scholar
  31. 31.
    Y. Lin, J. Zhang, E. H. Sargent and E. Kumacheva, Appl. Phys. Lett. 81 (2002) 3134.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • Y. Lin
    • 1
  • J. Zhang
    • 2
  • E. Kumacheva
    • 2
  • E. H. Sargent
    • 1
  1. 1.Department of Electrical and Computer EngineeringUniversity of TorontoTorontoCanada
  2. 2.Department of ChemistryUniversity of TorontoTorontoCanada

Personalised recommendations