Journal of Materials Science

, Volume 39, Issue 2, pp 547–555

Adhesion and sliding of wet snow on a super-hydrophobic surface with hydrophilic channels

  • T. Kako
  • A. Nakajima
  • H. Irie
  • Z. Kato
  • K. Uematsu
  • T. Watanabe
  • K. Hashimoto
Article

Abstract

Adhesion and sliding of wet snow on a superhydrophobic surface with hydrophilic channel were investigated. Two different alignment (two dimensional and three dimensional) of the hydrophilic channels in a superhydrophobic surface were prepared and compared with merely a superhydrophobic surface and a hydrophilic surface. Both alignment samples exhibited intermediate level of wet snow adhesion between merely a superhydrophobic surface and a hydrophilic surface. Although the three dimensional sample also showed intermediate level for the wet snow sliding behavior, the two dimensional sample exhibits poorer snow sliding behavior than a superhydrophobic surface. Based on the experiments using a water-hollow glass beads composite, water movement to hydrophilic parts from wet snow occurs on both samples. It is deduced that the poor sliding behavior on the two dimensional sample was due to the increase of viscosity of wet snow on superhydrophobic parts as a result of the water movement to hydrophilic parts.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    T. Tomabechi, M. Takakura and T. Ito, J. Snow Eng. Jpn. 12 (1996) 205.Google Scholar
  2. 2.
    M. Yoshida, J. Adhesion Soc. Jpn. 30 (1994) 418.Google Scholar
  3. 3.
    H. Saito, K. Takai, H. Takazawa and G. Yamauchi, J. Soc. Mater. Sci. Jpn. 46 (1997) 551.Google Scholar
  4. 4.
    T. Ito, M. Yuasa, T. Tomabechi and R. Imazu, J. Snow Eng. Jpn. 11 (1995) 283.Google Scholar
  5. 5.
    G. Yamauchi and T. Ueda, Kogyo-Zairyo 44 (1996) 42.Google Scholar
  6. 6.
    M. Takeuchi, Seppyo 40 (1978) 117.Google Scholar
  7. 7.
    M. Yuasa, R. Imazu, S. Fujiwara and T. Tomabechi, in Proceedings of Cold Region Technology Conference (1999) Vol. 15, p. 70.Google Scholar
  8. 8.
    Idem., in Proceedings of Cold Region Technology Conference (1998) Vol. 14, p. 30.Google Scholar
  9. 9.
    M. Yoshida, M. Yoshida and K. Konno, Rep. Hokkaido Industr. Res. Center 299 (2000) 13.Google Scholar
  10. 10.
    T. Kako, A. Nakajima, Z. Kato, K. Uematsu, T. Watanabe and K. Hashimoto, J. Ceram. Soc. Jpn. 110 (2002) 186.Google Scholar
  11. 11.
    A. Nakajima, A. Fujishima, K. Hashimoto and T. Watanabe, Adv. Mater. 11 (1999) 1365.Google Scholar
  12. 12.
    A. Nakajima, K. Abe, K. Hashimoto and T. Watanabe, Thin Solid Films 376 (2000) 140.Google Scholar
  13. 13.
    A. Nakajima, K. Hashimoto and T. Watanabe, Monatshefte fur Chemie 132 (2001) 31.Google Scholar
  14. 14.
    K. Takeda, M. Sasaki, N. Kieda, K. Katayama, T. Kako, K. Hashimoto, T. Watanabe and A. Nakajima, J. Mater. Sci. Lett. 20 (2001) 2131.Google Scholar
  15. 15.
    T. Onda, S. Shibuichi, N. Sato and K. Tsujii, Langmuir 12 (1996) 2125.Google Scholar
  16. 16.
    W. Chen, A. Y. Fadeev, M. C. Hsieh, D. Oner, J. Youngblood and T. J. Mccarthy, ibid. 15 (1999) 3395.Google Scholar
  17. 17.
    K. Tadanaga, N. Katata and T. Minami, J. Amer. Ceram. Soc. 80 (1997) 1040.Google Scholar
  18. 18.
    H. Gau, S. Herminghaus, P. Lenz and R. Lipowsky, Science 283 (1999) 46.Google Scholar
  19. 19.
    J. Drelich, J. D. Miller and R. J. Good, J. Coll. Interf. Sci. 179 (1996) 37.Google Scholar
  20. 20.
    J. Drelich, J. L. Wilbur, J. D. Miller, R. J. Good and G. M. Whitesides, Langmuir 12 (1996) 1913.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • T. Kako
    • 1
  • A. Nakajima
    • 2
  • H. Irie
    • 1
  • Z. Kato
    • 3
  • K. Uematsu
    • 3
  • T. Watanabe
    • 1
  • K. Hashimoto
    • 1
  1. 1.RCASTThe University of TokyoMeguro-ku, TokyoJapan
  2. 2.Advanced Systems of Technology IncubationHonson, Chigasaki-shi, KanagawaJapan
  3. 3.Nagaoka University of TechnologyNagaokaJapan

Personalised recommendations