Journal of Materials Science

, Volume 39, Issue 2, pp 445–450 | Cite as

Microstructure features of polycrystalline diamond synthesized directly from graphite under static high pressure

  • H. Sumiya
  • T. Irifune
  • A. Kurio
  • S. Sakamoto
  • T. Inoue


Recently, ultra-hard polycrystalline diamond was synthesized from graphite by direct conversion under static high pressure. This paper describes the microstructure features of thus formed polycrystalline diamond. Transmission electron microscopy and electron diffraction have revealed that the polycrystalline diamond has a mixed texture of a homogeneous fine structure and a lamellar structure. The former structure consists of fine-grained diamond particles of several tens of nanometers across, which are randomly oriented. The latter structure has bending diamond layers, which may reflect deformed shapes of locally layered graphite of starting material. The experimental results suggest that diamond particles in the homogeneous fine structure are transformed from graphite in the diffusion process, while diamond layers in the lamellar structure are formed in the martensitic process from graphite via the hexagonal diamond phase. It is also noted that significant grain growth occurred at a high temperature of ∼2700°C, and the lamellar structure was segmentalized to form new grain boundaries.


Polymer Transmission Electron Microscopy Graphite Hexagonal Diffusion Process 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    P. S. DfCarli and J. C. Jamieson, Science 133 (1961) 1821.Google Scholar
  2. 2.
    F. P. Bundy, J. Chem. Phys. 38 (1963) 631.Google Scholar
  3. 3.
    M. Wakatsuki, K. Ichinose and T. Aoki, Jpn. J. Appl. Phys. 11 (1972) 578.Google Scholar
  4. 4.
    S. Naka, K. Horii, Y. Takeda and T. Hanawa, Nature 259 (1976) 38.Google Scholar
  5. 5.
    A. Onodera, K. Higashi and Y. Irie, J. Mater. Sci. 23 (1988) 422.Google Scholar
  6. 6.
    H. Yusa, K. Takemura, Y. Matsui, H. Morishima, K. Watanabe, H. Yamawaki and K. Aoki, Appl. Phys. Lett. 72 (1998) 1843.Google Scholar
  7. 7.
    H. Yusa, Diamond Relat. Mater. 11 (2002) 87.Google Scholar
  8. 8.
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue and H. Sumiya, Nature 421 (2003) 599.Google Scholar
  9. 9.
    T. Irifune, A. Kurio, S. Sakamoto, T. Inoue, H. Sumiya and K. Funakoshi, Phys. Earth Planet. Inter. (2003), in press.Google Scholar
  10. 10.
    J. E. Burke, J. Amer. Ceram. Soc. 40 (1957) 80.Google Scholar
  11. 11.
    R. H. Wentorf, Jr., R. C. DeVries and F. P. Bundy, Science 208 (1980) 873.Google Scholar
  12. 12.
    J. C. Walmsley and A. R. Lang, J. Mater. Sci. Lett. 2 (1983) 785.Google Scholar
  13. 13.
    A. V. Kurdyumov, N. F. Ostrovskaya and A. N. Pilyankevich, Sov. Powder Metall. Met. Ceram. 27 (1988) 32.Google Scholar
  14. 14.
    F. P. Bundy and J. S. Kasper, J. Chem. Phys. 46 (1967) 3437.Google Scholar
  15. 15.
    T. Yagi, W. Utsumi, M. Yamakata, T. Kikegawa and O. Shimomura, Phys. Rev. B 46 (1992) 6031.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • H. Sumiya
    • 1
  • T. Irifune
    • 2
  • A. Kurio
    • 2
  • S. Sakamoto
    • 2
  • T. Inoue
    • 2
  1. 1.Advanced Materials R&D LaboratoriesSumitomo Electric IndustriesItamiJapan
  2. 2.Geodynamics Research CenterEhime UniversityMatsuyamaJapan

Personalised recommendations