Journal of Materials Science

, Volume 39, Issue 1, pp 339–341 | Cite as

Chemically-induced nucleation of hydroxyapatite at low temperature

  • M. L. Montero
  • A. Sáenz
  • V. M. Castaño


Polymer Hydroxyapatite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. C. Elliott, “Recent Studies of Apatites and Other Calciun Orthophospates,” in “Calcium Phosphates Materials,” Fundamentals edited by E. Bres and P. Hadouin (Sauramps Medical, Monpellier, 1998) p. 25.Google Scholar
  2. 2.
    S. Dorozhkin and M. Epple, Angew. Chem. Int. Ed. 41 (2002) 3130.Google Scholar
  3. 3.
    K. Mattox, in “Biomaterials-Hard Tissue Repair and Replacement,” Vol. 3, edited by D. Muster (Elsevier, Amsterdam, 1992).Google Scholar
  4. 4.
    E. A. P. De Maeyer, R. M. H. Verbeeck and D. E. Naessens, J. Cryst. Grow. 135 (1994) 539.Google Scholar
  5. 5.
    S. W. Russell, K. A. Luptak, Alford T. L. Suchicital and V. B. Pizziconi, J. Amer. Ceram. Soc. 79 (1996) 837.Google Scholar
  6. 6.
    D. Walsh, J. L. Kingston, B. R. Heywood and S. Mann, J. Cryst. Grow. 133 (1993) 1.Google Scholar
  7. 7.
    M. Yoshimura and H. Suda, “Hydroxyapatite and Related Materials,” edited by P. W. Brown and B. Constantz (CRC Press, Boca Raton, 1994) p. 45.Google Scholar
  8. 8.
    R. Z. Legeros, in “Hydroxyapatite and Related Materials,” edited by P. W. Brown and B. Constantz (CRC Press, Boca Raton, 1994) p. 3.Google Scholar
  9. 9.
    L. M. RodrÍguez-Lorenzo and M. Vallet-regÍ, Chem. Mat. 12 (2000) 2460.Google Scholar
  10. 10.
    F. Peters and Epple Mathias, J. Chem. Soc., Dalton Trans. (2001) 3577.Google Scholar
  11. 11.
    A. LÓpez-Macipe, J. GÓmez-Morales and R. RodrÍguez-Clemente, Adv. Mat. 10 (1998) 49.Google Scholar
  12. 12.
    W. Suchanek, H. Suda, M. Yashima, M. Kakihana and M. Yoshimura, J. Mater. Research 10 (1995) 521.Google Scholar
  13. 13.
    Y. Fujishiro, S. Uchida and T. Sato, Bioceramics 12 (1999) 141.Google Scholar
  14. 14.
    N. Cristiansen and R. E. Riman, “Bioceramics: A Future Trough Microstructural and Chemical Design,” in Proc. 5th Sacandinavian Sympo. Mat. Sci., New Materials and Process, May 22–23, 1989, p. 209.Google Scholar
  15. 15.
    Y. Fujishiro, A. Fujimoto, T. Sato and A. Okuwaki, J. Coll. Interf. Sci. 173 (1995) 119.Google Scholar
  16. 16.
    M. Toriyama, Y. Kawamoto, T. Suzuki, Y. Yokogawa, K. Nishizawa, F. Nagata and M. R. Mucalo, J. Mater. Sci. Lett. 15 (1996) 179.Google Scholar
  17. 17.
    T. S. B. Narasaraju and D. E. Phebe, J. Mater. Sci. 31 (1996) 1.Google Scholar
  18. 18.
    A. SÁenz, M. L. Montero and V. M. CastaÑo, Phys. Stat. Sol. 230 (2002) 347.Google Scholar
  19. 19.
    A. SÁenz, M. L. Montero, G. MondragÓn, V. RodrÍguez and V. M. CastaÑo, Mater. Res. Innov. in press (2003).Google Scholar
  20. 20.
    P. W. Browen, J. Amer. Ceram. Soc. 75 (1992) 17.Google Scholar
  21. 21.
    G. Vereecke and Lamaitre, J. Cryst. Grow 104 (1990) 521.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. L. Montero
    • 1
  • A. Sáenz
    • 2
  • V. M. Castaño
    • 3
  1. 1.Escuela de QuímicaUniversidad de Costa Rica; CICIMA, Centro de Investigación en Ciencia e Ingeniería de MaterialesMexico
  2. 2.CICIMA, Centro de Investigación en Ciencia e Ingeniería de Materiales; Escuela de FísicaUniversidad de Costa RicaMexico
  3. 3.Centro de Física Aplicada y Tecnología AvanzadaUNAMMéxico

Personalised recommendations