Journal of Materials Science

, Volume 39, Issue 1, pp 251–264 | Cite as

The effect of firing temperature, preparation technique and composition on the electrical properties of the nickel cobalt oxide series Ni x Co1 − xO y



The spinel NiCo2O4 and the materials within the Ni-Co oxide series have well established applications in electrochemistry. However, the importance of the electrical conductivity of these materials and the consequences of the choice of preparation technique and firing regime are often overlooked.

In this paper the effect of thermal treatment on the formation of the NiCo2O4 phase, its structure and electrical properties are investigated. Given the selection of an appropriate firing regime, a range of preparation techniques (thermal decomposition, cryochemical, spray pyrolysis and several precipitation methods) are investigated for the resultant electrical, structural and morphological properties. Finally, having selected an appropriate preparation procedure, the entire range of Ni-Co compositions is investigated with respect to the phases formed and their electrical properties.

The formation of pure NiCo2O4 in a narrow range of firing temperatures is highlighted and the temperature of 375°C is identified as being the most suitable. Besides morphological and granular concerns regarding the selection of the preparation procedure, the importance of the formation of the NiCo2O4 phase for the attainment of high electrical conductance is illustrated. Furthermore, the existence of the NiCo2O4 phase in compositions considerably outside of this stoichiometry is noted, and the presence of this phase in the attainment of high electrical conduction is highlighted.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    W. J. King and A. C. C. Tseung, Electrochimica Acta 19 (1974) 485.Google Scholar
  2. 2.
    A. C. C. Tseung and S. Jasem, ibid. 22 (1977) 31.Google Scholar
  3. 3.
    Y. E. Roginskaya, O. V. Morozova, E. N. Lubnin, Y. E. Ulitina, G. V. Lopukhova and S. Trasatti, Langmuir 13 (1997) 4621.Google Scholar
  4. 4.
    M. R. Gennero De Chialvo and A. C. Chialvo, Electrochimica Acta 38 (1993) 2247.Google Scholar
  5. 5.
    N. Heller-Ling, M. Prestat, J. L. Gautier, J. F. Koenig, G. Poillerat and P. Chartier, ibid. 42 (1997) 197.Google Scholar
  6. 6.
    R. N. Singh, J. P. Pandey, N. K. Singh, B. Lal, P. Chartier and J. F. Koenig, ibid. 45 (2000) 1911.Google Scholar
  7. 7.
    P. Cox and D. Pletcher, J. Mater. Sci. 9 (1974) 1393.Google Scholar
  8. 8.
    P. Cox and D. Pletcher, J. Appl Electrochem. 21 (1991) 11.Google Scholar
  9. 9.
    M. R. Tarasevich, G. I. Zakharkin, V. F. Makardei and A. M. Khutornoi, Zhurnal Prikladnoi Khimii. 49 (1976) 1205.Google Scholar
  10. 10.
    E. Rios, N. Nguyen-Cong, J. F. Marco, J. R. Gancedo, P. Chartier and J. L. Gautier, Electrochimica Acta 45 (2000) 4431.Google Scholar
  11. 11.
    M. Balasubramanian, X. Sun, X. Q. Yang and J. McBreen, J. Electrochem. Soc. 147 (2000) 2903.Google Scholar
  12. 12.
    C. C. Chang, N. Scarr and P. N. Kumta, Solid State Ionics 112 (1998) 329.Google Scholar
  13. 13.
    H. J. Kweon, G. B. Kim, H. S. Kim, S. S. Nam and D. G. Park, J. Power Sources 83 (1999) 83.Google Scholar
  14. 14.
    O. N. Knop, K. I. G. Reid, Sutarno and Y. Nakagawa, Can. J. Chem. 46 (1968) 3463.Google Scholar
  15. 15.
    N. N. Greenwood, in “Ionic Crystals, Lattice Defects and Nonstoichiometry” (Butterworths, London, 1968).Google Scholar
  16. 16.
    A. M. Trunov, V. A. Presnov, M. V. Uminskii, O. F. Rakityanskaya, T. S. Bakutina and A. I. Kotseruba, Elektrokhimiya 11 (1975) 552.Google Scholar
  17. 17.
    W. J. King, Ph.D. Thesis, The City University, London, 1972.Google Scholar
  18. 18.
    O. N. Kovalenko, P. G. Tsyrul'nikov, A. V. Golovin, V. V. Popvskii and L. M. Plyasova, Kinetika I Kataliz. 21 (1980) 1570.Google Scholar
  19. 19.
    J. Kelly, D. B. Hibbert and A. C. C. Tesung, J. Mater. Sci. 13 (1978) 1053.Google Scholar
  20. 20.
    D. B. Hibbert and A. C. C. Tseung, ibid. 14 (1979) 2665.Google Scholar
  21. 21.
    P. Peshev, A. Toshev and G. Gyurov, Mat. Res. Bull. 24 (1989) 33.Google Scholar
  22. 22.
    D. G. Klissurski and E. L. Uzunova, Chem. Mater. 3 (1991) 1060.Google Scholar
  23. 23.
    M. Hamdani, J. F. Koenig and P. Chartier, J. Appl. Electrochem. 18 (1988) 568.Google Scholar
  24. 24.
    R. N. Singh, J. F. Koenig, G. Poillerat and P. Chartier, J. Electrochem. Soc. 137 (1990) 1408.Google Scholar
  25. 25.
    S. K. Tiwari, S. Samuel, R. N. Singh, G. Poillerat, R. F. Koenig and P. Chartier, Int. J. Hydrogen Energy 20 (1995) 9.Google Scholar
  26. 26.
    P. Nkeng, J. F. Koenig, J. L. Gautier, P. Chartier and G. Poillerat, J. Electroanal. Chem. 402 (1996) 81.Google Scholar
  27. 27.
    M. El Baydi, S. K. Tiwari, R. N. Singh, J. L. Rehspringer, P. Chartier, J. F. Koenig and G. Poillerat, J. Solid State Chem. 116 (1995) 157.Google Scholar
  28. 28.
    J. G. Kim, D. L. Pugmire, D. Battaglia and M. A. Langell, Appl. Surf. Sci. 165 (2000) 70.Google Scholar
  29. 29.
    J. Haenen, W. Visscher and E. Barendrecht, J. Electroanal. Chem. 208 (1986) 297.Google Scholar
  30. 30.
    L. A. De Faria, M. Prestat, J. F. Koenig, P. Chartier and S. Trasatti, Electrochimica Acta 44 (1998) 1481.Google Scholar
  31. 31.
    K. Krezhov, P. Konstantinov, E. Svab and D. MeszÁros, Mater. Sci. Forum. 321–324 (2000) 785.Google Scholar
  32. 32.
    C. C. Hu, Y. S. Lee and T. C. Wen, Mater. Chem. Phys. 48 (1997) 264.Google Scholar
  33. 33.
    S. Trasatti, Electrochimica Acta 29 (1984) 1503.Google Scholar
  34. 34.
    S. Trasatti, Electrochimica Acta 36 (1991) 225.Google Scholar
  35. 35.
    D. Dollimore, G. A. Gamlen and T. J. Taylor, Thermochimica Acta. 51 (1981) 269.Google Scholar
  36. 36.
    JCPDS Powder Diffraction Reference Card 20-0781 (NiCo2O4) (1965).Google Scholar
  37. 37.
    JCPDS Powder Diffraction Reference Card 22-1189 (NiO) (1965).Google Scholar
  38. 38.
    JCPDS Powder Diffraction Reference Card 9-418 (Co3O4) (1965).Google Scholar
  39. 39.
    JCPDS Powder Diffraction Reference Card 10-0188 (NiCoO2) (1965).Google Scholar
  40. 40.
    H. M. Carapuca, M. I. Da Silva Pereira and F. M. A. Da Costa, Mat. Res. Bul. 25 (1990) 1183.Google Scholar
  41. 41.
    R. Garavaglia, C. M. Mari and S. Trasatti, Surf. Techn. 19 (1983) 197.Google Scholar
  42. 42.
    H. T. S. Britton, J. Chem. Soc. 125 (1925) 2110.Google Scholar
  43. 43.
    C. Bocca, A. Barbucci, M. Delucchi and G. Cerisola, Int. J. Hydrogen Energy 23 (1998) 1.Google Scholar
  44. 44.
    R. B. Heslop and P. L. Robinson, in “Inorganic Chemistry” (Elsevier Publishing, London, 1963) p. 500.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  1. 1.MCA ServicesMeldreth, CambridgeshireUK

Personalised recommendations