Advertisement

Journal of Materials Science

, Volume 39, Issue 1, pp 133–139 | Cite as

Compositional effects on densification and microstructural evolution of bismuth titanate

  • J. S. Patwardhan
  • M. N. Rahaman
Article

Abstract

The effects of small compositional variations on the densification and microstructural evolution of bismuth titanate (Bi4Ti3O12) powder compacts were investigated during sintering and during hot forging. For a nominally stoichiometric Bi4Ti3O12 composition, sintering commenced at ∼870°C, leading to a relatively dense microstructure (relative density >97% of the theoretical value) with randomly aligned elongated grains after 1 h at 1100°C. Small additions (1 weight percent) of Bi2O3 or TiO2 to the nominally stoichiometric Bi4Ti3O12 composition shifted the onset of sintering to lower or higher temperatures, respectively, but did not significantly alter the final density. Hot forging produced a microstructure of aligned, elongated grains. The small compositional variations did not seriously influence the ability to develop the elongated grain alignment. However, subsequent annealing of the hot forged materials produced significant changes in the aligned grain microstructure. The elongated grain alignment in the nominally stoichiometric Bi4Ti3O12 composition was destroyed during subsequent annealing for less than 2 h at 1100°C.

Keywords

Polymer Microstructure TiO2 Titanate Powder Compact 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    J. Rodel and A. M. Glaeser, J. Amer. Ceram. Soc. 73 (1990) 3292.Google Scholar
  2. 2.
    M. Seabaugh, D. Horn, I. Kerscht, S.-H. Hong and G. L. Messing, in “Sintering Technology,” edited by R. M. German, G. L. Messing and R. G. Cornwall (Marcel Dekker, New York, 1996) p. 341.Google Scholar
  3. 3.
    S.-H. Hong and G. L. Messing, J. Amer. Ceram. Soc. 81 (1998) 1269.Google Scholar
  4. 4.
    T. S. Huang, M. N. Rahaman, T.-I. Mah and T. A. Parthasarathay, ibid. 83 (2000) 204.Google Scholar
  5. 5.
    H. S. Shulman, M. Testorf, D. Damjanovic and N. Setter, ibid. 79 (1996) 3124.Google Scholar
  6. 6.
    U. Kunaver and D. Kolar, Acta Metall. Mater. 41 (1993) 2255.Google Scholar
  7. 7.
    J. U. Knickerbocker and D. A. Payne, Ferroelectrics 37 (1981) 733.Google Scholar
  8. 8.
    T. Takenaka and K. Sakata, Jpn. J. Appl. Phys. 19 (1980) 31.Google Scholar
  9. 9.
    T. Kimura, T. Yoshimoto, N. Iida, Y. Fujita and T. Yamaguchi, J. Amer. Ceram. Soc. 72 (1989) 85.Google Scholar
  10. 10.
    Y. Inoue, T. Kimura, T. Yamaguchi, K. Nagata and K. Okazaki, Jpn. J. Appl. Phys. 20 (1983) 95.Google Scholar
  11. 11.
    S. Swartz, W. A. Schulze and J. V. Biggers, Ferroelectrics 38 (1981) 765.Google Scholar
  12. 12.
    H. Watanabe, T. Kimura and T. Yamaguchi, J. Amer. Ceram. Soc. 72 (1989) 289.Google Scholar
  13. 13.
    J. A. Horn, S. C. Zhang, U. Selvaraj, G. L. Messing and S. Troiler-Mckinstry, ibid. 82 (1999) 921.Google Scholar
  14. 14.
    S.-H. Hong, S. Trolier-Mckinstry and G. L. Messing, ibid. 83 (2000) 113.Google Scholar
  15. 15.
    A. Fouskova and L. E. Cross, J. Appl. Phys. 41 (1970) 2834.Google Scholar
  16. 16.
    S. E. Cummins and L. E. Cross, Appl. Phys. Lett. 10 (1967) 14.Google Scholar
  17. 17.
    S. E. Cummins and L. E. Cross, J. Appl. Phys. 39 (1968) 2268.Google Scholar
  18. 18.
    Y. Masuda, H. Masumoto, A. Baba, T. Goto and T. Hirai, Jpn. J. Appl. Phys. 31 (1992) 3108.Google Scholar
  19. 19.
    E. I. Speranskaya, I. S. Rez, L. V. Kozlova, V. M. Skorilov and V. I. Slavov, Izv. Akad. Nauk. SSSR, Neorg. Mater. 1 (1965) 232.Google Scholar
  20. 20.
    T. M. Bruton, J. Solid State Chem. 9 (1974) 173.Google Scholar
  21. 21.
    E. M. Levin and R. S. Roth, J. Res. Nat. Bur. Stds. A 68 (1964) 197.Google Scholar
  22. 22.
    A. D. Morrison, Ferroelectrics 2 (1971) 59.Google Scholar
  23. 23.
    J. F. Dorrian, R. E. Newnham, D. K. Smith and M. I. Kay, ibid. 3 (1971) 17.Google Scholar
  24. 24.
    F. K. Lotgering, J. Inorg. Nucl. Chem. 9 (1959) 113.Google Scholar
  25. 25.
    M. N. Rahaman, L. C. De Jonghe, J. A. Voigt and B. A. Tuttle, J. Mater. Sci. 25 (1990) 737.Google Scholar
  26. 26.
    J. Luo, H. Wang and Y.-M. Chiang, J. Amer. Ceram. Soc. 82 (1999) 916.Google Scholar
  27. 27.
    M. N. Rahaman, “Ceramic Processing and Sintering,” 2nd ed. (Marcel Dekker, New York, 2003).Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • J. S. Patwardhan
    • 1
  • M. N. Rahaman
    • 1
  1. 1.Department of Ceramic EngineeringUniversity of Missouri-RollaRollaUSA

Personalised recommendations