Journal of Materials Science

, Volume 38, Issue 24, pp 4817–4830 | Cite as

Microstructural characterization of porous manganese thin films for electrochemical supercapacitor applications

  • B. Djurfors
  • J. N. Broughton
  • M. J. Brett
  • D. G. Ivey


An in-depth microstructural characterization was performed on manganese oxide materials that have been produced for electrochemical supercapacitor applications using a novel physical vapor deposition process. Manganese was e-beam evaporated and deposits as a combination of the cubic forms of Mn and MnO with a porous zigzag structure. The electrochemically oxidized sample that is used as the supercapacitor base material is tetragonal Mn3O4. An apparent active layer with increased sodium levels was imaged by STEM, lending some credence to the argument that the pseudocapacitance effect is based entirely on a surface layer of adsorbed sodium. Upon furnace annealing the zigzag structure near the free surface is destroyed and replaced with a columnar oxide layer of cubic MnO and tetragonal Mn3O4. This capping effect ultimately reduces the usable surface area and is thought to account for the reduction in capacitance seen on annealing.


Manganese Mn3O4 Active Layer Manganese Oxide Sodium Level 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. E. Conway, in “Electrochemical Supercapacitors” (Kluwer/Plenum Publishers, NewYork, 1999).Google Scholar
  2. 2.
    R. Kotz and M. Carlen Electrochimica Acta 45 (2000) 2438.Google Scholar
  3. 3.
    M. Toupin T. Brousse and D. Belanger Chem. Mater. 14 (2002) 3946.Google Scholar
  4. 4.
    Y. U. Jeong and A. Manthiram J. Electrochem. Soc. 149(11) (2002) A1419.Google Scholar
  5. 5.
    S. Pang M. A. Anderson and T. W. Chapman, ibid. 147(2) (2000) 444.Google Scholar
  6. 6.
    S. Pang and M. A. Anderson J. Mater. Res. 15(10) (2000) 2096.Google Scholar
  7. 7.
    C. Hu and T. Tsou Electrochimica Acta 47 (2002) 3523.Google Scholar
  8. 8.
    H. Y. Lee S. W. Kim and H. Y. Lee Electrochem. Solid State Lett. 4(3) (2001) A19.Google Scholar
  9. 9.
    J. N. Broughton and M. J. Brett, ibid. 5(12) (2002) A279.Google Scholar
  10. 10.
    S.-F. chin S.-C. Pang and M. A. Anderson J. Electrochem. Soc. 149(4) (2002) A379.Google Scholar
  11. 11.
    K. Robbie and M. J. Brett J. Vac. Sci. Technol. A 15(3) (1997) 1460.Google Scholar
  12. 12.
    J. Jiang and A. Kucernak Electrochimica Acta 47(15) (2002) 2381.Google Scholar

Copyright information

© Kluwer Academic Publishers 2003

Authors and Affiliations

  • B. Djurfors
    • 1
  • J. N. Broughton
    • 2
  • M. J. Brett
    • 2
  • D. G. Ivey
    • 1
  1. 1.Department of Chemical and Materials EngineeringUniversity of AlbertaEdmontonCanada
  2. 2.Department of Electrical and Computer EngineeringUniversity of AlbertaEdmontonCanada

Personalised recommendations