The Monogenic Scale-Space: A Unifying Approach to Phase-Based Image Processing in Scale-Space

  • M. Felsberg
  • G. Sommer


In this paper we address the topics of scale-space and phase-based image processing in a unifying framework. In contrast to the common opinion, the Gaussian kernel is not the unique choice for a linear scale-space. Instead, we chose the Poisson kernel since it is closely related to the monogenic signal, a 2D generalization of the analytic signal, where the Riesz transform replaces the Hilbert transform. The Riesz transform itself yields the flux of the Poisson scale-space and the combination of flux and scale-space, the monogenic scale-space, provides the local features phase-vector and attenuation in scale-space. Under certain assumptions, the latter two again form a monogenic scale-space which gives deeper insight to low-level image processing. In particular, we discuss edge detection by a new approach to phase congruency and its relation to amplitude based methods, reconstruction from local amplitude and local phase, and the evaluation of the local frequency.

Poisson kernel scale-space local phase analytic signal Riesz transform monogenic signal 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    J. Babaud, A.P.Witkin, M. Baudin, and R.O. Duda, “Uniqueness of the Gaussian kernel for scale-space filtering,” IEEE Transactions onPattern Analysis andMachine Intelligence,Vol. 8, No. 1, pp. 26–33, 1986.Google Scholar
  2. 2.
    J. Behar, M. Porat, and Y.Y. Zeevi. “Image reconstruction from localized phase,” IEEE Transactions on Signal Processing, Vol. 40, No. 4, pp. 736–743, 1992.Google Scholar
  3. 3.
    R.N. Bracewell, The Fourier Transform and its Applications, McGraw Hill, 1986.Google Scholar
  4. 4.
    R.N. Bracewell, Two-Dimensional Imaging, Prentice Hall Signal Processing Series. Prentice Hall, Englewood Cliffs, 1995.Google Scholar
  5. 5.
    F. Brackx, R. Delanghe, and F. Sommen, Clifford Analysis, Pitman: Boston, 1982.Google Scholar
  6. 6.
    I. Bronstein, K. Semendjajew, G. Musiol, and H. Mühlig, Taschenbuch der Mathematik, Verlag Harri Deutsch, Frankfurt, 1993.Google Scholar
  7. 7.
    K. Burg, H. Haf, and F. Wille, Höhere Mathematik für Ingenieure, Band V Funktionalanalysis und Partielle Differentialgleichungen, Teubner Stuttgart, 1993.Google Scholar
  8. 8.
    K. Burg, H. Haf, and F. Wille, Höhere Mathematik für Ingenieure, Band IV Vektoranalysis und Funktionentheorie, Teubner Stuttgart, 1994.Google Scholar
  9. 9.
    P.J. Burt and E.H. Adelson, “The Laplacian pyramid as a compact image code,” IEEE Trans. Communications, Vol. 31, No. 4, pp. 532–540, 1983.Google Scholar
  10. 10.
    F. Catté, P.-L. Lions, J.-M. Morel, and T. Coll, “Image selective smoothing and edge detection by nonlinear diffusion,” SIAM J. Numer. Analysis, Vol. 32, pp. 1895–1909, 1992.Google Scholar
  11. 11.
    R. Duits, L.M.J. Florack, J. de Graaf, and B.M. ter Haar Romeny, “On the axioms of scale space theory,” Journal of Mathematical Imaging and Vision, 2002 (accepted).Google Scholar
  12. 12.
    R. Duits, L.M.J. Florack, B. M. ter Haar Romeny, and J. de Graaf, “Scale-space axioms critically revisited,” in Signal and Image Processing, N. Younan (Ed.), IASTED, ACTA Press, Kauai, August 2002, pp. 304–309.Google Scholar
  13. 13.
    M. Evans, N. Hastings, and J.B. Peacock, Statistical Distributions, 3rd. ed., Wiley-Interscience, 2000.Google Scholar
  14. 14.
    M. Felsberg, “Disparity from monogenic phase,” in 24. DAGM Symposium Mustererkennung, Zürich, L.V. Gool (Ed.), Vol. 2449 of Lecture Notes in Computer Science, Springer, Heidelberg, 2002, pp. 248–256.Google Scholar
  15. 15.
    M. Felsberg, Low-Level Image Processing with the Structure Multivector, Ph.D. thesis, Institute of Computer Science and Applied Mathematics, Christian-Albrechts-University of Kiel, 2002. TR no. 0203, available at http://www.informatik.unikiel. de/reports/2002/0203.html.Google Scholar
  16. 16.
    M. Felsberg, R. Duits, and L. Florack, “The monogenic scale space on a bounded domain and its applications,” in Scale Space Conference, 2003 (accepted).Google Scholar
  17. 17.
    M. Felsberg and G. Sommer, “A new extension of linear signal processing for estimating local properties and detecting features,” in 22. DAGMSymposium Mustererkennung, G. Sommer, N. Krüger, and C. Perwass (Eds.), Springer, Heidelberg, Kiel, 2000, pp. 195–202.Google Scholar
  18. 18.
    M. Felsberg and G. Sommer, “The monogenic signal,” IEEE Transactions on Signal Processing, Vol. 49, No. 12, pp. 3136–3144, 2001.Google Scholar
  19. 19.
    M. Felsberg and G. Sommer, “Scale adaptive filtering derived from the Laplace equation,” in 23. DAGM Symposium Mustererkennung, B. Radig and S. Florczyk (Eds.),Vol. 2191 of Lecture Notes in Computer Science, Springer, Heidelberg, München, 2001, pp. 124–131.Google Scholar
  20. 20.
    M. Felsberg and G. Sommer, “The Poisson scale-space: A uni-fied approach to phase-based image processing in scale-space,” Tech. Rep. LiTH-ISY-R-2453, Dept. EE, Linköping University, SE-581 83 Linköping, Sweden, 2002.Google Scholar
  21. 21.
    M. Felsberg and G. Sommer, “The structure multivector,” in Applied Geometrical Algebras in Computer Science and Engineering, Birkhäuser, Boston, 2002, pp. 437–448.Google Scholar
  22. 22.
    L. Florack, Image Structure, Vol. 10 of Computational Imaging and Vision, Kluwer Academic Publishers, 1997.Google Scholar
  23. 23.
    L. Florack and A. Kuijper, “The topological structure of scalespace images,” Journal of Mathematical Imaging and Vision, Vol. 12, No. 1, pp. 65–79, 2000.Google Scholar
  24. 24.
    G.H. Granlund, “In search of a general picture processing operator,” Computer Graphics and Image Processing, Vol. 8, pp. 155–173, 1978.Google Scholar
  25. 25.
    G.H. Granlund and H. Knutsson, Signal Processing for Computer Vision, Kluwer Academic Publishers: Dordrecht, 1995.Google Scholar
  26. 26.
    S.L. Hahn, Hilbert Transforms in Signal Processing, Artech House: Boston, London, 1996.Google Scholar
  27. 27.
    D. Hestenes, “Multivector calculus,” J. Math. Anal. and Appl., Vol. 24, No. 2, pp. 313–325, 1968.Google Scholar
  28. 28.
    R.A. Hummel, “Representations based on zero-crossings in scale space,” in Proc. IEEE Comp. Soc. Conf. Computer Vision and Pattern Recognition, Miami Beach, 1986, pp. 204–209.Google Scholar
  29. 29.
    T. Iijima, “Basic theory of pattern observation,” in Papers of Technical Group on Automata and Automatic Control, IECE, Japan, December 1959.Google Scholar
  30. 30.
    T. Iijima, “Basic theory on normalization of pattern (In case of a typical one-dimensional pattern),” Bulletin of the Electrotechnical Laboratory, Vol. 26, pp. 368–388, 1962.Google Scholar
  31. 31.
    T. Iijima, “Observation theory of two-dimensional visual patterns,” in Papers of Technical Group on Automata and Automatic Control, IECE, Japan, October 1962.Google Scholar
  32. 32.
    B. Jähne, Digitale Bildverarbeitung, Springer: Berlin, 1997.Google Scholar
  33. 33.
    J.J. Koenderink, “The structure of images,” Biological Cybernetics, Vol. 50, pp. 363–370, 1984.Google Scholar
  34. 34.
    P. Kovesi, “Image features from phase information,” Videre: Journal of Computer Vision Research, Vol. 1, No. 3, 1999.Google Scholar
  35. 35.
    S.G. Krantz, Handbook of Complex Variables, Birkhäuser: Boston, 1999.Google Scholar
  36. 36.
    G. Krieger and C. Zetzsche, “Nonlinear image operators for the evaluation of local intrinsic dimensionality,” IEEE Transactions on Image Processing, Vol. 5, No. 6, pp. 1026–1041, 1996.Google Scholar
  37. 37.
    T. Lindeberg, Scale-Space Theory in Computer Vision, The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers: Boston, 1994.Google Scholar
  38. 38.
    T. Lindeberg, “Linear spatio-temporal scale-space,” in Scale-Space Theory in Computer Vision, Vol. 1252 of Lecture Notes in Computer Science, Springer: Utrecht, Netherlands, 1997.Google Scholar
  39. 39.
    T. Lindeberg, On the Axiomatic Foundations of Linear Scale-Space: Combining Semi-Group Structure with Causality vs. Scale Invariance, Ch. 6, Kluwer Academic, 1997.Google Scholar
  40. 40.
    A. Papoulis, The Fourier Integral and its Applications, McGraw-Hill: New York, 1962.Google Scholar
  41. 41.
    A. Papoulis, Probability, Random Variables and Stochastic Processes, McGraw-Hill, 1965.Google Scholar
  42. 42.
    E.J. Pauwels, L.J. Van Gool, P. Fiddelaers, and T. Moons, “An extended class of scale-invariant and recursive scale space filters,” IEEE Transactions on Pattern Analysis and Machine Intelligence, Vol. 17, No. 7, pp. 691–701, 1995.Google Scholar
  43. 43.
    P. Perona and J. Malik, “Scale-space and edge detection using anisotropic diffusion,” IEEE Trans. Pattern Analysis and Machine Intelligence, Vol. 12, No. 7, pp. 629–639, 1990.Google Scholar
  44. 44.
    D. Reisfeld, “The constrained phase congruency feature detector: Simultaneous localization, classification and scale determination,” Pattern Recognition Letters, Vol. 17, pp. 1161–1169, 1996.Google Scholar
  45. 45.
    J.L. Schiff, The Laplace Transform, Undergraduate Texts in Mathematics. Springer: New York, 1999.Google Scholar
  46. 46.
    N. Sochen, R. Kimmel, and R. Malladi, “A geometrical framework for low level vision,” IEEE Trans. on Image Processing, Special Issue on PDE Based Image Processing, Vol. 7, No. 3, pp. 310–318, 1998.Google Scholar
  47. 47.
    E. Stein and G. Weiss, Introduction to Fourier Analysis on Euclidean Spaces, Princeton University Press: New Jersey, 1971.Google Scholar
  48. 48.
    J. Weickert, “Anisotropic siffusion in image processing,” Ph.D. thesis, Faculty of Mathematics, University of Kaiserslautern, 1996.Google Scholar
  49. 49.
    J. Weickert, “A review of nonlinear diffusion filtering,” in Scale-Space Theory in Computer Vision, B. ter Haar Romeny, L. Florack, J. Koenderink, and M. Viergever (Eds.), Vol. 1252 of LNCS, Springer: Berlin, 1997, pp. 260–271.Google Scholar
  50. 50.
    J. Weickert, S. Ishikawa, and A. Imiya, “Scale-space has first been proposed in Japan,” Mathematical Imaging and Vision, Vol. 10, pp. 237–252, 1999.Google Scholar
  51. 51.
    A.P. Witkin, “Scale-space filtering,” in Proc. 8th Int. Joint Conf. Art. Intell., 1983, pp. 1019–1022.Google Scholar
  52. 52.
    A.L. Yuille and T. Poggio, “Scaling theorems for zerocrossings,” IEEE Trans. Pattern Analysis and Machine Intell., Vol. 8, pp. 15–25, 1986.Google Scholar

Copyright information

© Kluwer Academic Publishers 2004

Authors and Affiliations

  • M. Felsberg
    • 1
  • G. Sommer
    • 2
  1. 1.Department of Electrical EngineeringLinköping UniversitySweden
  2. 2.Institute of Computer Science and Applied MathematicsChristian-Albrechts-University of KielGermany

Personalised recommendations